By data analysis the ordinary differential equation for the description of an experimental electric resonance circuit with nonlinear capacitor is derived. Triglycine sulfate (TGS) was used as nonlinear dielectric material. This is the most thoroughly investigated ferroelectric with a second order phase transition. Its static dielectric small signal behavior is well described in the framework of the Landau theory, yielding a Duffing-type ordinary differential equation as a model equation of the circuit. Data analysis allows us to check carefully the validity of this model and to determine required corrections of this simplified equation.

1.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1979).
2.
B. A. Strukov and A. P. Levanyuk, Fizicheskie Osnovy Segnetoelektricheskih Yavlenii v Kristallah (Nauka, Moscow, 1995).
3.
L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, TEIL I (Akademie-Verlag, Berlin, 1979).
4.
M.
Diestelhorst
and
H.
Beige
, “
Nonlinear behaviour of TGS-crystals
,”
Ferroelectrics
88
,
15
18
(
1988
).
5.
H.
Beige
,
M.
Diestelhorst
,
R.
Forster
, and
T.
Krietsch
, “
Chaos near structural phase transitions
,”
Phase Transit.
37
,
213
238
(
1992
).
6.
See, for example, J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Studies, and Bifurcations of Vector Fields (Springer, New York, 1983).
7.
M.
Diestelhorst
,
H.
Beige
, and
R.-P.
Kapsch
, “
A parametric ferroelectric amplifier
,”
Ferroelectrics
156
,
111
116
(
1994
);
M.
Diestelhorst
,
H.
Beige
, and
R.-P.
Kapsch
, “
Parametric small signal amplification near pitchfork bifurcations
,”
Ferroelectrics
172
,
419
423
(
1995
).
8.
P.
Grassberger
,
T.
Schreiber
, and
C.
Schaffrath
, “
Nonlinear time sequence analysis
,”
Int. J. Bifurcation Chaos
1
,
521
547
(
1991
).
9.
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge Nonlinear Science Series No. 7 (Cambridge University Press, Cambridge, England, 1997).
10.
F.
Takens
, “
Detecting strange attractors in turbulence
,”
Lect. Notes Math.
898
,
366
381
(
1981
).
11.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
12.
H.
Kantz
, “
A robust method to estimate the maximal Lyapunov exponent of a time series
,”
Phys. Lett. A
185
,
77
87
(
1994
).
13.
G.
Benettin
,
L.
Galgani
, and
J.-M.
Strelcyn
, “
Kolmogorov entropy and numerical experiments
,”
Phys. Rev. A
14
,
2338
2345
(
1976
).
14.
P.
Grassberger
and
I.
Procaccia
, “
Characterization of strange attractors
,”
Phys. Rev. Lett.
50
,
346
349
(
1983
).
15.
T.
Schreiber
and
H.
Kantz
, “
Noise in chaotic data: Diagnosis and treatment
,”
Chaos
5
,
133
142
(
1995
).
16.
M. Davies (unpublished).
17.
L.
Jaeger
and
H.
Kantz
, “
Unbiased reconstruction of the dynamics underlying a noisy chaotic time series
,”
Chaos
6
,
440
450
(
1996
).
18.
H.
Kantz
, “
Quantifying the closeness of fractal measures
,”
Phys. Rev. E
49
,
5091
5097
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.