By data analysis the ordinary differential equation for the description of an experimental electric resonance circuit with nonlinear capacitor is derived. Triglycine sulfate (TGS) was used as nonlinear dielectric material. This is the most thoroughly investigated ferroelectric with a second order phase transition. Its static dielectric small signal behavior is well described in the framework of the Landau theory, yielding a Duffing-type ordinary differential equation as a model equation of the circuit. Data analysis allows us to check carefully the validity of this model and to determine required corrections of this simplified equation.
REFERENCES
1.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1979).
2.
B. A. Strukov and A. P. Levanyuk, Fizicheskie Osnovy Segnetoelektricheskih Yavlenii v Kristallah (Nauka, Moscow, 1995).
3.
L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, TEIL I (Akademie-Verlag, Berlin, 1979).
4.
M.
Diestelhorst
and H.
Beige
, “Nonlinear behaviour of TGS-crystals
,” Ferroelectrics
88
, 15
–18
(1988
).5.
H.
Beige
, M.
Diestelhorst
, R.
Forster
, and T.
Krietsch
, “Chaos near structural phase transitions
,” Phase Transit.
37
, 213
–238
(1992
).6.
See, for example, J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Studies, and Bifurcations of Vector Fields (Springer, New York, 1983).
7.
M.
Diestelhorst
, H.
Beige
, and R.-P.
Kapsch
, “A parametric ferroelectric amplifier
,” Ferroelectrics
156
, 111
–116
(1994
);M.
Diestelhorst
, H.
Beige
, and R.-P.
Kapsch
, “Parametric small signal amplification near pitchfork bifurcations
,” Ferroelectrics
172
, 419
–423
(1995
).8.
P.
Grassberger
, T.
Schreiber
, and C.
Schaffrath
, “Nonlinear time sequence analysis
,” Int. J. Bifurcation Chaos
1
, 521
–547
(1991
).9.
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge Nonlinear Science Series No. 7 (Cambridge University Press, Cambridge, England, 1997).
10.
F.
Takens
, “Detecting strange attractors in turbulence
,” Lect. Notes Math.
898
, 366
–381
(1981
).11.
T.
Sauer
, J. A.
Yorke
, and M.
Casdagli
, “Embedology
,” J. Stat. Phys.
65
, 579
–616
(1991
).12.
H.
Kantz
, “A robust method to estimate the maximal Lyapunov exponent of a time series
,” Phys. Lett. A
185
, 77
–87
(1994
).13.
G.
Benettin
, L.
Galgani
, and J.-M.
Strelcyn
, “Kolmogorov entropy and numerical experiments
,” Phys. Rev. A
14
, 2338
–2345
(1976
).14.
P.
Grassberger
and I.
Procaccia
, “Characterization of strange attractors
,” Phys. Rev. Lett.
50
, 346
–349
(1983
).15.
T.
Schreiber
and H.
Kantz
, “Noise in chaotic data: Diagnosis and treatment
,” Chaos
5
, 133
–142
(1995
).16.
M. Davies (unpublished).
17.
L.
Jaeger
and H.
Kantz
, “Unbiased reconstruction of the dynamics underlying a noisy chaotic time series
,” Chaos
6
, 440
–450
(1996
).18.
H.
Kantz
, “Quantifying the closeness of fractal measures
,” Phys. Rev. E
49
, 5091
–5097
(1994
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.