It is well known that there is considerable spatial inhomogeneity in the electrical properties of heart muscle, and that the many interventions that increase this initial degree of inhomogeneity all make it easier to induce certain cardiac arrhythmias. We consider here the specific example of myocardial ischemia, which greatly increases the electrical heterogeneity of ventricular tissue, and often triggers life-threatening cardiac arrhythmias such as ventricular tachycardia and ventricular fibrillation. There is growing evidence that spiral-wave activity underlies these reentrant arrhythmias. We thus investigate whether spiral waves might be induced in a realistic model of inhomogeneous ventricular myocardium. We first modify the Luo and Rudy [Circ. Res. 68, 1501–1526 (1991)] ionic model of cardiac ventricular muscle so as to obtain maintained spiral-wave activity in a two-dimensional homogeneous sheet of ventricular muscle. Regional ischemia is simulated by raising the external potassium concentration ([K+]o) from its nominal value of 5.4 mM in a subsection of the sheet, thus creating a localized inhomogeneity. Spiral-wave activity is induced using a pacing protocol in which the pacing frequency is gradually increased. When [K+]o is sufficiently high in the abnormal area (e.g., 20 mM), there is complete block of propagation of the action potential into that area, resulting in a free end or wave break as the activation wave front encounters the abnormal area. As pacing continues, the free end of the activation wave front traveling in the normal area increasingly separates or detaches from the border between normal and abnormal tissue, eventually resulting in the formation of a maintained spiral wave, whose core lies entirely within an area of normal tissue lying outside of the abnormal area (“type I” spiral wave). At lower [K+]o (e.g., 10.5 mM) in the abnormal area, there is no longer complete block of propagation into the abnormal area; instead, there is partial entrance block into the abnormal area, as well as exit block out of that area. In this case, a different kind of spiral wave (transient “type II” spiral wave) can be evoked, whose induction involves retrograde propagation of the action potential through the abnormal area. The number of turns made by the type II spiral wave depends on several factors, including the level of [K+]o within the abnormal area and its physical size. If the pacing protocol is changed by adding two additional stimuli, a type I spiral wave is instead produced at [K+]o=10.5 mM. When pacing is continued beyond this point, apparently aperiodic multiple spiral-wave activity is seen during pacing. We discuss the relevance of our results for arrythmogenesis in both the ischemic and nonischemic heart.

1.
P. V.
Bayly
,
B. H.
KenKnight
,
J. M.
Rogers
,
E. E.
Johnson
,
R. E.
Ideker
, and
W. M.
Smith
, “
Spatial organization, predictability, and determinism in ventricular fibrillation
,”
Chaos
8
,
103
115
(
1998
).
2.
P.-S.
Chen
,
A.
Garfinkel
,
J. N.
Weiss
, and
H. S.
Karagueuzian
, “
Computerized mapping of fibrillation in normal ventricular myocardium
,”
Chaos
8
,
127
136
(
1998
).
3.
B. H.
KenKnight
,
P. V.
Bayly
,
W. M.
Smith
, and
R. E.
Ideker
, “
Epicardial activation patterns during regional capture of the fibrillating ventricle: Potential mechanisms and implications
,” (in preparation).
4.
F. X.
Witkowski
,
L. J.
Leon
,
P. A.
Penkoske
,
R. B.
Clark
,
M. L.
Spano
,
W. L.
Ditto
, and
W. R.
Giles
, “
A method for visualization of ventricular fibrillation: Design of a cooled fiberoptically coupled image intensified CCD data acquisition system incorporating wavelet shrinkage based adaptive filtering
,”
Chaos
8
,
94
102
(
1998
).
5.
W. E.
Garrey
, “
The nature of fibrillary contraction of the heart.—Its relation to tissue mass and form
,”
Am. J. Physiol.
33
,
397
414
(
1914
).
6.
A. G. Mayer, “Rhythmical pulsation in Scyphomedusae,” Carnegie Inst. Wash. Publ. No. 47, 1906.
7.
G. R.
Mines
, “
On dynamic equilibrium in the heart
,”
J. Physiol. (London)
46
,
349
383
(
1913
).
8.
G. R. Mines, “On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation,” Trans. R. Soc. Can. Ser. 3, Sect. IV 8, 43–52 (1914).
9.
I. S.
Balakhovskii
, “
Several modes of excitation movement in ideal excitable tissue
,”
Biophysics
10
,
1175
1179
(
1965
).
10.
V. I.
Krinskii
, “
Spread of excitation in an inhomogeneous medium (state similar to cardiac fibrillation)
,”
Biophysics
11
,
776
784
(
1966
).
11.
A. V.
Kholopov
, “
Spread of excitation and the formation of closed pathways of conduction in a plane medium the refractoriness of which depends on the period of excitation
,”
Biophysics
13
,
1231
1243
(
1967
).
12.
A. V.
Kholopov
, “
Effect of the parameters and properties of an excitable medium on the process of fibrillation
,”
Biophysics
14
,
726
734
(
1969
).
13.
A. I.
Shcherbunov
,
N. I.
Kukushkin
, and
M. Y.
Sakson
, “
Reverberator in a system of interrelated fibres described by the Noble equation
,”
Biophysics
18
,
547
554
(
1973
).
14.
A. M. Pertsov and A. K. Grenadier, “The autowave nature of cardiac arrhythmias,” in Self-Organization: Autowaves and Structures far from Equilibrium, edited by V. I. Krinsky (Springer-Verlag, Berlin, 1984), pp. 184–190.
15.
A. T. Winfree, When Time Breaks Down. The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias (Princeton University Press, Princeton, 1987).
16.
A. T.
Winfree
, “
Sudden cardiac death: A problem in topology
,”
Sci. Am.
248
(
5
),
144
161
(
1983
).
17.
A. T.
Winfree
, “
Electrical instability in cardiac muscle: Phase singularities and rotors
,”
J. Theor. Biol.
138
,
353
405
(
1989
).
18.
R. A.
Gray
,
J.
Jalife
,
A.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
, and
A. M.
Pertsov
, “
Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart
,”
Circulation
91
,
2454
2469
(
1995
).
19.
C. F.
Starmer
,
D. N.
Romashko
,
R. S.
Reddy
,
Y. I.
Zilberter
,
J.
Starobin
,
A. O.
Grant
, and
V. I.
Krinsky
, “
Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias
,”
Circulation
92
,
595
605
(
1995
).
20.
R. A.
Gray
,
J.
Jalife
,
A. V.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
, and
A. M.
Pertsov
, “
Mechanisms of cardiac fibrillation
,”
Science
270
,
1222
1223
(
1995
).
21.
J.
Jalife
,
R. A.
Gray
,
G. E.
Morley
, and
J. M.
Davidenko
, “
Self-organization and the dynamical nature of ventricular fibrillation
,”
Chaos
8
,
79
93
(
1998
).
22.
G. K.
Moe
,
W. C.
Rheinboldt
, and
J. A.
Abildskov
, “
A computer model of atrial fibrillation
,”
Am. Heart J.
67
,
200
221
(
1964
).
23.
A. V.
Panfilov
and
A. V.
Holden
, “
Spatiotemporal irregularity in a two-dimensional model of cardiac tissue
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
219
225
(
1991
).
24.
A. V.
Panfilov
, “
Spiral breakup as a model of ventricular fibrillation
,”
Chaos
8
,
57
64
(
1998
).
25.
M. A.
Allessie
,
F. I. M.
Bonke
, and
F. J. G.
Schopman
, “
Circus movement in rabbit atrial muscle as a mechanism of tachycardia
,”
Circ. Res.
33
,
54
62
(
1973
).
26.
D. W.
Frazier
,
P. D.
Wolf
,
J. M.
Wharton
,
A. S. L.
Tang
,
W. M.
Smith
, and
R. E.
Ideker
, “
Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium
,”
J. Clin. Invest.
83
,
1039
1052
(
1989
).
27.
J. M.
Davidenko
,
A. V.
Pertsov
,
R.
Salomonsz
,
W.
Baxter
, and
J.
Jalife
, “
Stationary and drifting spiral waves of excitation in isolated cardiac muscle
,”
Nature (London)
355
,
349
351
(
1992
).
28.
C. A. Nour, J. L. Leon, M. Vermeulen, R. Cardinal, and F. A. Roberge, “Mapping of reentry in a thin sheet of canine myocardium,” 17th EMBS Conference (IEEE, Montreal, 1995), Paper 1.1.6.6.
29.
C.
Cabo
,
A. M.
Pertsov
,
J. M.
Davidenko
,
W. T.
Baxter
,
R. A.
Gray
, and
J.
Jalife
, “
Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle
,”
Biophys. J.
70
,
1105
1111
(
1996
).
30.
N. V. Thakor and M. G. Fishler, “Initiation and termination of spiral waves in a two-dimensional bidomain model of cardiac tissue,” Computers in Cardiology (IEEE Computer Society, Silver Springs, 1996), pp. 229–232.
31.
D. T.
Kim
,
Y.
Kwan
,
J. J.
Lee
,
T.
Ikeda
,
T.
Uchida
,
K.
Kamjoo
,
Y.-H.
Kim
,
J. J. C.
Ong
,
C. A.
Athill
, and
T.-J.
Wu
et al., “
Patterns of spiral tip motion in cardiac tissues
,”
Chaos
8
,
137
148
(
1998
).
32.
A. T.
Winfree
, “
Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media
,”
Chaos
1
,
303
334
(
1991
).
33.
M.
Courtemanche
and
A. T.
Winfree
, “
Re-entrant rotating waves in a Beeler–Reuter based model of two-dimensional cardiac electrical activity
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
431
444
(
1991
).
34.
M. G. Fishler and N. V. Thakor, “A massively parallel computer model of propagation through a two-dimensional cardiac syncytium,” PACE 14, 1694–1699 (1991).
35.
L. J.
Leon
,
F. A.
Roberge
, and
A.
Vinet
, “
Simulation of two-dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics
,”
Ann. Biomed. Eng.
22
,
592
609
(
1994
).
36.
I. R.
Efimov
,
V. I.
Krinsky
, and
J.
Jalife
, “
Dynamics of rotating vortices in the Beeler–Reuter model of cardiac tissue
,”
Chaos Solitons Fractals
5
,
513
526
(
1995
).
37.
V. N.
Biktashev
and
A. V.
Holden
, “
Re-entrant activity and its control in a model of mammalian ventricular tissue
,”
Proc. R. Soc. London, Ser. B
263
,
1373
1382
(
1996
).
38.
M.
Courtemanche
, “
Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity
,”
Chaos
6
,
579
600
(
1996
).
39.
L. A. Irvine and R. L. Winslow, “Numerical studies of use-dependent block of cardiac sodium channels by quinidine on spiral wave reentry,” in Ref. 30, pp. 613–616.
40.
V. N.
Biktashev
and
A. V.
Holden
, “
Re-entrant waves and their elimination in a model of mammalian ventricular tissue
,”
Chaos
8
,
48
56
(
1998
).
41.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
42.
N.
Trayanova
,
K.
Scouibine
, and
F.
Aguel
, “
The role of cardiac tissue structure in defibrillation
,”
Chaos
8
,
221
233
(
1998
).
43.
T.
Watanabe
,
P. M.
Rautaharju
, and
T. F.
McDonald
, “
Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig
,”
Circ. Res.
57
,
362
373
(
1985
).
44.
D. S.
Rosenbaum
,
D. T.
Kaplan
,
A.
Kanai
,
L.
Jackson
,
H.
Garan
,
R. J.
Cohen
, and
G.
Salama
, “
Repolarization inhomogeneities in ventricular myocardium change dynamically with abrupt cycle length shortening
,”
Circulation
84
,
1333
1345
(
1991
).
45.
C.
Antzelevitch
,
S.
Sicouri
,
S. H.
Litovsky
,
A.
Lukas
,
S. C.
Krishnan
,
J. M.
Di Diego
,
G. A.
Gintant
, and
D.-W.
Liu
, “
Heterogeneity within the ventricular wall: Electrophysiology and pharmacology of epicardial, endocardial, and M cells
,”
Circ. Res.
69
,
1427
1449
(
1991
).
46.
J.
Han
and
G. K.
Moe
, “
Nonuniform recovery of excitability in ventricular muscle
,”
Circ. Res.
14
,
44
60
(
1964
).
47.
M. J.
Janse
, “Vulnerability to ventricular fibrillation,” (in press).
48.
C.-S.
Kuo
,
K.
Munakata
,
C. P.
Reddy
, and
B.
Surawicz
, “
Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations
,”
Circulation
67
,
1356
1367
(
1983
).
49.
M. J.
Janse
and
A. L.
Wit
, “
Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction
,”
Physiol. Rev.
69
,
1049
1169
(
1989
).
50.
G. W.
Beeler
and
H.
Reuter
, “
Reconstruction of the action potential of ventricular myocardial fibres
,”
J. Physiol. (London)
268
,
177
210
(
1977
).
51.
J.-P.
Drouhard
and
F. A.
Roberge
, “
A simulation study of the ventricular myocardial action potential
,”
IEEE Trans. Biomed. Eng.
BME-29
,
494
502
(
1982
).
52.
D. J. Mogul, N. V. Thakor, J. R. McCullough, G. A. Myers, R. E. ten Eick, and D. H. Singer, “Modified Beeler–Reuter model yields improved simulation of myocardial action potentials,” Computers in Cardiology, (IEEE Computer Society, Silver Springs, 1984), pp. 159–162.
53.
J.-P.
Drouhard
and
F. A.
Roberge
, “
Revised formulation of the Hodgkin–Huxley representation of the sodium current in cardiac cells
,”
Comput. Biomed. Res.
20
,
333
350
(
1987
).
54.
D. R.
Lemieux
,
F. A.
Roberge
, and
P.
Savard
, “
A model study of the contribution of active Na–K transport to membrane repolarization in cardiac cells
,”
J. Theor. Biol.
142
,
1
33
(
1990
).
55.
C.
Luo
and
Y.
Rudy
, “
A model of the ventricular cardiac action potential
,”
Circ. Res.
68
,
1501
1526
(
1991
).
56.
A. V.
Sahakian
,
G. A.
Mayers
, and
N.
Maglaveras
, “
Unidirectional block in cardiac fibers: Effects of discontinuities in coupling resistance and spatial changes in resting membrane potential in a computer simulation study
,”
IEEE Trans. Biomed. Eng.
39
,
510
521
(
1992
).
57.
D.
Noble
,
S. J.
Noble
,
G. C. L.
Bett
,
Y. E.
Earm
,
W. K.
Ho
, and
I. K.
So
, “
The role of sodium–calcium exchange during the cardiac action potential
,”
Ann. NY Acad. Sci.
639
,
334
353
(
1991
).
58.
C.
Nordin
, “
Computer model of membrane current and intracellular Ca++ flux in the isolated guinea pig ventricular myocyte
,”
Am. J. Physiol.
265
,
H2117
H2136
(
1993
).
59.
C. H.
Luo
and
Y.
Rudy
, “
A dynamic model of the cardiac ventricular action potential
,”
Circ. Res.
74
,
1071
1096
(
1994
).
60.
J.
Zeng
,
K. R.
Laurita
,
D. S.
Rosenbaum
, and
Y.
Rudy
, “
Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization
,”
Circ. Res.
77
,
140
152
(
1995
).
61.
J. M.
Ferrero
, Jr.
,
J.
Saiz
,
J. M.
Ferrero
, and
N. V.
Thakor
, “
Simulation of action potentials from metabolically impaired cardiac myocytes: role of ATP-sensitive K+ current
,”
Circ. Res.
79
,
208
221
(
1996
).
62.
N. Friedman, A. Vinet, and F. A. Roberge, “A study of a new model of the cardiac ventricular cell incorporating myoplasmic calcium regulation,” Proceedings of the 22nd CMBES Conference (IEEE, Montreal, 1996).
63.
S.
Dokos
,
B. G.
Celler
, and
N. H.
Lovell
, “
Modification of DiFrancesco–Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity
,”
Ann. Biomed. Eng.
21
,
321
335
(
1993
).
64.
Y. E.
Earm
and
D.
Noble
, “
A model of the single atrial cell: Relation between calcium current and calcium release
,”
Proc. R. Soc. London, Ser. B
240
,
83
96
(
1990
).
65.
V. N.
Biktashev
and
A. V.
Holden
, “
Control of re-entrant activity in a model of mammalian atrial tissue
,”
Proc. R. Soc. London, Ser. B
260
,
211
217
(
1995
).
66.
A. V.
Holden
and
H.
Zhang
, “
Characteristics of atrial re-entry and meander computed from a model of a rabbit single atrial cell
,”
J. Theor. Biol.
175
,
545
551
(
1995
).
67.
T. J.
Lewis
and
M. R.
Guevara
, “
Chaotic dynamics in an ionic model of the propagated cardiac action potential
,”
J. Theor. Biol.
146
,
407
432
(
1990
).
68.
H.
Windisch
,
W.
Müller
, and
H. A.
Tritthart
, “
Fluorescence monitoring of rapid changes in membrane potential in heart muscle
,”
Biophys. J.
48
,
877
884
(
1985
).
69.
C.
Cabo
,
A. M.
Pertsov
,
W. T.
Baxter
,
J. M.
Davidenko
,
R. A.
Gray
, and
J.
Jalife
, “
Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle
,”
Circ. Res.
75
,
1014
1028
(
1994
).
70.
V. G.
Fast
and
A. G.
Kléber
, “
Block of impulse propagation at an abrupt tissue expansion: Evaluation of the critical strand diameter in 2- and 3-dimensional computer models
,”
Cardiovasc. Res.
30
,
449
459
(
1995
).
71.
L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1982).
72.
A. M.
Pertsov
,
J. M.
Davidenko
,
R.
Salomonsz
,
W. T.
Baxter
, and
J.
Jalife
, “
Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle
,”
Circ. Res.
72
,
631
650
(
1993
).
73.
G.
Isenberg
and
U.
Klöckner
, “
Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude
,”
Pflügers Arch. Ges. Physiol. Menschen Tiere
395
,
30
41
(
1982
).
74.
D.
Noble
, “
The surprising heart: A review of recent progress in cardiac electrophysiology
,”
J. Physiol. (London)
353
,
1
50
(
1984
).
75.
G.
Isenberg
and
U.
Klöckner
, “
Isolated bovine ventricular myocytes: Characterization of the action potential
,”
Pflügers Arch. Ges. Physiol. Menschen Tiere
395
,
19
29
(
1982
).
76.
A.
Varró
,
D. A.
Lathrop
,
S. B.
Hester
,
P. P.
Nánási
, and
J. G.
Papp
, “
Ionic currents and action potentials in rabbit, rat, guinea pig ventricular myocytes
,”
Bas. Res. Cardiol.
88
,
93
102
(
1993
).
77.
M. A.
Allessie
,
F. I. M.
Bonke
, and
F. J. G.
Schopman
, “
Circus movement in rabbit atrial muscle as a mechanism of tachycardia III. The ‘leading circle’ concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle
,”
Circ. Res.
41
,
9
18
(
1977
).
78.
J. L. R. M.
Smeets
,
M. A.
Allessie
,
W. J. E. P.
Lammers
,
F. I. M.
Bonke
, and
J.
Hollen
, “
The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium: The role of heart rate, autonomic transmitters, temperature, and potassium
,”
Circ. Res.
58
,
96
108
(
1986
).
79.
A. M.
Pertsov
,
E. A.
Ermakova
, and
A. V.
Panfilov
, “
Rotating spiral waves in a modified Fitz-Hugh–Nagumo model
,”
Physica D
14
,
117
124
(
1984
).
80.
S. D.
Girouard
,
J. M.
Pastore
,
K. R.
Laurita
,
K. W.
Gregory
, and
D. S.
Rosenbaum
, “
Optical mapping in a new guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit
,”
Circulation
93
,
603
613
(
1996
).
81.
M. J. Schalij, “Anisotropic conduction and ventricular tachycardia,” Doctoral thesis, University of Limburg, Maastricht, 1988.
82.
R.
Coronel
,
J. W.
Fiolet
,
F. J. G.
Wilms-Schopman
,
A. F.
Schaapherder
,
T. A.
Johnson
,
L. S.
Gettes
, and
M. J.
Janse
, “
Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart
,”
Circulation
77
,
1125
1138
(
1988
).
83.
R.
Coronel
,
J. W.
Fiolet
,
J. G.
Wilms-Schopman
,
T.
Opthof
,
A. F.
Schaapherder
, and
M. J.
Janse
, “
Distribution of extracellular potassium and electrophysiologic changes during two-stage coronary ligation in the isolated, perfused canine heart
,”
Circulation
80
,
165
177
(
1989
).
84.
R.
Coronel
,
F. J. G.
Wilms-Schopman
,
T.
Opthof
,
J.
Cinca
,
J. W.
Fiolet
, and
M. J.
Janse
, “
Reperfusion arrhythmias in isolated perfused pig hearts. Inhomogeneities in extracellular potassium, ST and TQ potentials, and transmembrane action potentials
,”
Circ. Res.
71
,
1131
1142
(
1992
).
85.
R.
Coronel
,
F. J. G.
Wilms-Schopman
,
J. W.
Fiolet
,
T.
Opthof
, and
M. J.
Janse
, “
The relation between extracellular potassium concentration and pH in the border zone during regional ischemia in isolated porcine hearts
,”
J. Mol. Cell. Cardiol.
27
,
2069
2073
(
1995
).
86.
M.
Vinson
,
A. M.
Pertsov
, and
J.
Jalife
, “
Anchoring of vortex filaments in 3D excitable media
,”
Physica D
72
,
119
134
(
1993
).
87.
N. C.
Janvier
and
M. R.
Boyett
, “
The role of Na–Ca exchange current in the cardiac action potential
,”
Cardiovasc. Res.
32
,
69
84
(
1996
).
88.
T.
Doerr
,
R.
Denger
,
A.
Doerr
, and
W.
Trautwein
, “
Ionic currents contributing to the action potential in single ventricular myocytes of the guinea-pig studied with action potential clamp
,”
Pflügers Arch. Ges. Physiol. Menschen Tiere
416
,
230
237
(
1990
).
89.
G. H.
Sharp
and
R. W.
Joyner
, “
Simulated propagation of cardiac action potentials
,”
Biophys. J.
31
,
403
423
(
1980
).
90.
A. T. Winfree. “How does ventricular tachycardia decay into ventricular fibrillation?,” in Cardiac Mapping, edited by M. Shenasa, M. Borggrefe, and G. Breithardt (Futura, New York, 1993), pp. 655–682.
91.
F. J. L.
van Capelle
and
D.
Durrer
, “
Computer simulation of arrhythmias in a network of coupled excitable elements
,”
Circ. Res.
47
,
454
466
(
1980
).
92.
F. J. L. van Capelle and M. A. Allessie, “Computer simulation of anisotropic impulse propagation: Characteristics of action potentials during re-entrant arrhythmias,” in Cell to Cell Signalling: From Experiments to Theoretical Models, edited by A. Goldbeter (Academic, London, 1989), pp. 577–588.
93.
M. A. Mercader, D. C. Michaels, and J. Jalife, “Reentrant activity in the form of spiral waves in mathematical models of the sinoatrial node,” in Cardiac Electrophysiology: From Cell to Bedside, edited by D. P. Zipes and J. Jalife, 2nd ed. (Saunders, Philadelphia, 1995), pp. 389–403.
94.
D.
Barkley
,
M.
Kness
, and
L. S.
Tuckerman
, “
Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation
,”
Phys. Rev. A
42
,
2489
2492
(
1990
).
95.
D.
Barkley
and
I. G.
Kevrekidis
, “
A dynamical systems approach to spiral wave dynamics
,”
Chaos
4
,
453
460
(
1994
).
96.
H.
Zhang
and
A. V.
Holden
, “
Chaotic meander of spiral waves in the FitzHugh–Nagumo system
,”
Chaos Solitons Fractals
5
,
661
670
(
1995
).
97.
J. M.
Starobin
and
C. F.
Starmer
, “
Common mechanism links spiral wave meandering and wave-front–obstacle separation
,”
Phys. Rev. E
55
,
1193
1196
(
1997
).
98.
A. T.
Winfree
, “
Electrical turbulence in three-dimensional heart muscle
,”
Science
266
,
1003
1006
(
1994
).
99.
A. T. Winfree, “Rotors, fibrillation and dimensionality,” in Computational Biology of the Heart, edited by A. V. Panfilov and A. V. Holden (J. Wiley, Chichester, 1997), pp. 101–135.
100.
A.
Panfilov
and
P.
Hogeweg
, “
Spiral breakup in a modified FitzHugh–Nagumo model
,”
Phys. Lett. A
176
,
295
299
(
1993
).
101.
A. V.
Panfilov
and
P.
Hogeweg
, “
Scroll breakup in a three-dimensional excitable medium
,”
Phys. Rev. E
53
,
1740
1743
(
1996
).
102.
V. G.
Fast
and
A. M.
Pertsov
, “
Drift of a vortex in the myocardium
,”
Biophysics
35
,
489
494
(
1990
).
103.
A. M.
Pertsov
and
Y. A.
Yermakova
, “,”
Mechanism of drift of a helical wave in an inhomogeneous medium
33
,
364
369
(
1988
).
104.
A. T.
Winfree
, “
Heart muscle as a reaction–diffusion medium: The roles of electric potential diffusion, activation front curvature, and anisotropy
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
487
526
(
1997
).
105.
E.
Downar
,
M. J.
Janse
, and
D.
Durrer
, “
The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart
,”
Circulation
56
,
217
224
(
1977
).
106.
A. V.
Panfilov
and
J. P.
Keener
, “
Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle
,”
J. Theor. Biol.
163
,
439
448
(
1993
).
107.
A. A.
Petrov
and
B. N.
Fel’d
, “
Analysis of the possible mechanism of origin of the extrasystole in local ischaemia of the myocardium using a mathematical model
,”
Biophysics
18
,
1145
1150
(
1973
).
108.
A. N.
Reshetilov
,
A. M.
Pertsov
, and
V. I.
Krinskii
, “
Parameters of the myocardium controlling vulnerability. Analysis of mathematical models
,”
Biophysics
24
,
133
139
(
1979
).
109.
A. V.
Panfilov
and
B. N.
Vasiev
, “
Vortex initiation in a heterogeneous excitable medium
,”
Physica D
49
,
107
113
(
1991
).
110.
K. I.
Agladze
, “
High-frequency instability of wave fronts
,”
Chaos
4
,
525
529
(
1994
).
111.
R. R.
Aliev
and
A. V.
Panfilov
, “
Modeling of heart excitation patterns caused by a local inhomogeneity
,”
J. Theor. Biol.
181
,
33
40
(
1996
).
112.
J. M.
Starobin
and
C. F.
Starmer
, “
Boundary-layer analysis of waves propagating in an excitable medium: Medium conditions for wave-front–obstacle separation
,”
Phys. Rev. E
54
,
430
437
(
1996
).
113.
J. M.
Starobin
,
Y. I.
Zilberter
,
E. M.
Rusnak
, and
C. F.
Starmer
, “
Wavelet formation in excitable cardiac tissue: The role of wavefront–obstacle interactions in initiating high-frequency fibrillatory-like arrhythmias
,”
Biophys. J.
70
,
581
594
(
1996
).
114.
K.
Agladze
,
J. P.
Keener
,
S. C.
Müller
, and
A.
Panfilov
, “
Rotating spiral waves created by geometry
,”
Science
264
,
1746
1748
(
1994
).
115.
M.
Gómez-Gesteira
,
J. L.
del Castillo
,
M. E.
Vázquez-Iglesias
,
V.
Pérez-Muñuzuri
, and
V.
Pérez-Villar
, “
Influence of the critical curvature on spiral initiation in an excitable medium
,”
Phys. Rev. E
50
,
4646
4649
(
1994
).
116.
M.
Bär
,
A. K.
Bangia
,
I. G.
Kevrekidis
,
G.
Haas
,
H.-H.
Rotermund
, and
G.
Ertl
, “
Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation
,”
J. Phys. Chem.
100
,
19
106
19
117
(
1996
).
117.
A. V.
Panfilov
and
A. M.
Pertsov
, “
Mechanism of the origin of the helical waves in active media associated with the phenomenon of critical curvature
,”
Biophysics
27
,
931
934
(
1982
).
118.
A. M.
Pertsov
,
A. V.
Panfilov
, and
F. U.
Medvedeva
, “
Instability of autowaves in excitable media associated with the phenomenon of critical curvature
,”
Biophysics
28
,
103
107
(
1983
).
119.
Z.
Nagy-Ungvarai
,
A. M.
Pertsov
,
B.
Hess
, and
S. C.
Müller
, “
Lateral instabilities of a wave front in the Ce-catalyzed Belousov–Zhabotinsky reaction
,”
Physica D
61
,
205
212
(
1992
).
120.
A. M.
Pertsov
,
E. A.
Ermakova
, and
E. E.
Shnol
, “
On the diffraction of autowaves
,”
Physica D
44
,
178
190
(
1990
).
121.
A. V. Panfilov and J. P. Keener, “Generation of reentry in anisotropic myocardium,” J. Cardiovasc. Electrophysiol. 4, 412–421 (1993).
122.
D. C.
Russell
,
H. J.
Smith
, and
M. F.
Oliver
, “
Transmembrane potential changes and ventricular fibrillation during repetitive myocardial ischaemia in the dog
,”
Br. Heart J.
42
,
88
96
(
1979
).
123.
M. J.
Janse
,
F. J. L.
van Capelle
,
H.
Morsink
,
A. G.
Kléber
,
F.
Wilms-Schopman
,
R.
Cardinal
,
C.
Naumann D’Alnoncourt
, and
D.
Durrer
, “
Flow of ‘injury’ current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms
,”
Circ. Res.
47
,
151
165
(
1980
).
124.
R. Coronel, “Distribution of extracellular potassium during acute myocardial ischemia,” Doctoral thesis, University of Amsterdam, Amsterdam, 1988.
125.
A. S.
Harris
, and
A.
Guevara Rojas
, “
The initiation of ventricular fibrillation due to coronary occlusion
,”
Exp. Med. Surg.
1
,
105
122
(
1943
).
126.
N.
El-Sherif
,
B. J.
Scherlag
,
R.
Lazzara
, and
R. R.
Hope
, “
Re-entrant ventricular arrhythmias in the late myocardial infarction period: 1. Conduction characteristics in the infarction zone
,”
Circulation
55
,
686
702
(
1977
).
127.
N.
El-Sherif
,
R. R.
Hope
,
B. J.
Scherlag
, and
R.
Lazzara
, “
Re-entrant ventricular arrhythmias in the late myocardial infarction period. 2. Patterns of initiation and termination of reentry
,”
Circulation
55
,
702
719
(
1977
).
128.
N.
El-Sherif
,
W. B.
Gough
,
R. H.
Zeiler
, and
R.
Hariman
, “
Reentrant ventricular arrhythmias in the late myocardial infarction period. 12. Spontaneous versus induced reentry and intramural versus epicardial circuits
,”
J. Am. Coll. Cardiol.
6
,
124
132
(
1985
).
129.
M. A.
Habbab
and
N.
El-Sherif
, “
Recordings from the slow zone of reentry during burst pacing versus programmed premature stimulation for initiation of reentrant ventricular tachycardia in patients with coronary artery disease
,”
Am. J. Cardiol.
70
,
211
217
(
1992
).
130.
E. A.
Ermakova
,
A. M.
Pertsov
, and
E. E.
Shnol
, “
On the interaction of vortices in two-dimensional active media
,”
Physica D
40
,
185
195
(
1989
).
131.
L. E.
Hinkle
, Jr.
,
D. C.
Argyros
,
J. C.
Hayes
,
T.
Robinson
,
D. R.
Alonso
,
S. C.
Shipman
, and
M. E.
Edwards
, “
Pathogenesis of an unexpected sudden death: Role of early cycle ventricular premature contractions
,”
Am. J. Cardiol.
39
,
873
879
(
1977
).
132.
M. R. Guevara, “Spatiotemporal patterns of block in an ionic model of cardiac Purkinje fibre,” in From Chemical to Biological Organization, edited by M. Markus, S. C. Müller, and G. Nicolis (Springer-Verlag, Berlin, 1988), pp. 273–281.
133.
H.
Moréna
,
M. J.
Janse
,
J. W. T.
Fiolet
,
W. J. G.
Krieger
,
H.
Crijns
, and
D.
Durrer
, “
Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart
,”
Circ. Res.
46
,
634
646
(
1980
).
134.
B. D.
Nearing
,
A. H.
Huang
, and
R. L.
Verrier
, “
Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave
,”
Science
252
,
437
440
(
1991
).
135.
D. S.
Rosenbaum
,
L. E.
Jackson
,
J. M.
Smith
,
H.
Garan
,
J. N.
Ruskin
, and
R. J.
Cohen
, “
Electrical alternans and vulnerability to ventricular arrhythmias
,”
New England J. Med.
330
,
235
241
(
1994
).
136.
N.
El-Sherif
,
R.
Mehra
,
W. B.
Gough
, and
R. H.
Zeiler
, “
Reentrant ventricular arrhythmias in the late myocardial infarction period. II. Burst pacing versus multiple premature stimulation in the induction of reentry
,”
J. Am. Coll. Cardiol.
4
,
295
304
(
1984
)., , , and , “,” 4, ().
137.
A.
Ogbaghebriel
and
A.
Shrier
, “
Inhibition of metabolism abolishes transient outward current in rabbit atrial myocytes
,”
Am. J. Physiol.
266
,
H182
H190
(
1994
).
138.
W. T.
Smith
IV
,
W. F.
Fleet
,
T. A.
Johnson
,
C. L.
Engle
, and
W. E.
Cascio
, “
The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling
,”
Circulation
92
,
3051
3060
(
1995
).
139.
J. T.
Vermeulen
,
H. L.
Tan
,
H.
Rademaker
,
C. A.
Schumacher
,
P.
Loh
,
T.
Opthof
,
R.
Coronel
, and
M. J.
Janse
, “
Electrophysiologic and extracellular ionic changes during acute ischemia in failing and normal rabbit myocardium
,”
J. Mol. Cell. Cardiol.
28
,
123
131
(
1996
).
140.
S. M.
Dillon
,
M. A.
Allessie
,
P. C.
Ursell
, and
A. L.
Wit
, “
Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts
,”
Circ. Res.
63
,
182
206
(
1988
).
141.
I.
Aranson
,
H.
Levine
, and
L.
Tsimring
, “
Controlling spatiotemporal chaos
,”
Phys. Rev. Lett.
72
,
2561
2564
(
1994
).
142.
S. M.
Zoldi
and
H. S.
Greenside
, “
Karhunen–Loève decomposition of extensive chaos
,”
Phys. Rev. Lett.
78
,
1687
1690
(
1997
).
143.
T.
Akiyama
, “
Intracellular recording of in situ ventricular cells during ventricular fibrillation
,”
Am. J. Physiol.
240
,
H465
H471
(
1981
).
144.
J. F.
Swartz
,
J. L.
Jones
, and
R. D.
Fletcher
, “
Characterization of ventricular fibrillation based on monophasic action potential morphology in the human heart
,”
Circulation
87
,
1907
1914
(
1993
).
145.
See AIP Document No. E-PAPS: E-CHAOE-8-025801 for original color movies.
E-PAPS document files may be retrieved free of charge from our FTP server (http://www.aip.org/epaps/epaps.html) or from ftp.aip.org in the directory/epaps/. For further information, e-mail: [email protected] or fax: 516-576-2223.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.