It is well known that the ability to fibrillate is intrinsic to a normal ventricle that exceeds a critical mass. The questions we address are how is ventricular fibrillation (VF) initiated and perpetuated in normal myocardium, and why is VF not seen more often in the general population if all ventricles have the ability to fibrillate. To study the mechanisms of VF, we used computerized mapping techniques with up to 512 channels of simultaneous multisite recordings for data acquisition. The data were then processed for dynamic display of the activation patterns and for mathematical analyses of the activation intervals. The results show that in normal ventricles, VF can be initiated by a single strong premature stimulus given during the vulnerable period of the cardiac cycle. The initial activations form a figure-eight pattern. Afterward, VF will perpetuate itself without any outside help. The self-perpetuation itself is due to at least two factors. One is that single wave fronts spontaneously break up into two or more wavelets. The second is that when two wavelets intersect perpendicular to each other, the second wavelet is broken by the residual refractoriness left over from the first wavelet. Mathematical analyses of the patterns of activation during VF revealed that VF is a form of chaos, and that transition from ventricular tachycardia (VT) to VF occurs via the quasiperiodic route. In separate experiments, we found that we can convert VF to VT by tissue size reduction. The physiological mechanism associated with the latter transition appears to be the reduction of the number of reentrant wave fronts and wandering wavelets. Based on these findings, we propose that the reentrant wave fronts and the wandering wavelets serve as the physiological equivalent of coupled oscillators. A minimal number of oscillators is needed for VF to perpetuate itself, and to generate chaotic dynamics; hence a critical mass is required to perpetuate VF. We conclude that VF in normal myocardium is a form of reentrant cardiac arrhythmia. A strong electrical stimulus initiates single or dual reentrant wave fronts that break up into multiple wavelets. Sometimes short-lived reentry is also generated during the course of VF. These organized reentrant and broken wavelets serve as coupled oscillators that perpetuate VF and maintain chaos. Although the ability to support these oscillators exists in a normal ventricle, the triggers required to generate them are nonexistent in the normal heart. Therefore, VF and sudden death do not happen to most people with normal ventricular myocardium.

1.
F. Battelli, “Le mécanisme de la mort par les courants électriques chez l’homme,” Rev. Méd. Suisse Romande 10, 605–618 (1899).
2.
C. J.
Wiggers
,
J. R.
Bell
, and
M.
Paine
, “
Studies of ventricular fibrillation caused by electric shock. II. Cinematographic and electrocardiographic observation of the natural process in the dog’s heart. Its inhibition by potassium and the revival of coordinated beats by calcium
,”
Am. Heart J.
5
,
351
365
(
1930
).
3.
B. G. King, “The effect of electric shock on heart action with special reference to varying susceptibility in different parts of the cardiac cycle,” Ph.D. thesis, Aberdeen Press, Columbia University, New York, 1934.
4.
L. P.
Ferris
,
B. G.
King
,
P. W.
Spence
, and
H. B.
Williams
, “
Effect of electric shock on the heart
,”
Electr. Eng. Jpn.
55
,
498
515
(
1936
).
5.
C. J.
Wiggers
and
R.
Wegria
, “
Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole
,”
Am. J. Physiol.
128
,
500
505
(
1940
).
6.
N. E. Shumway, J. A. Johnson, and R. J. Stish, “The study of ventricular fibrillation by threshold determinations,” J. Thoracic Surg. 34, 643–653 (1957).
7.
C. J.
Wiggers
and
R.
Wegria
, “
Quantitative measurement of the fibrillation thresholds of the mammalian ventricle with observations on the effects of procaine
,”
Am. J. Physiol.
131
,
296
(
1940
).
8.
B. F.
Hoffman
,
E. F.
Gorin
,
F. S.
Wax
,
A. A.
Siebens
, and
C. M.
Brooks
, “
Vulnerability to fibrillation and the ventricular-excitability curve
,”
Am. J. Physiol.
167
,
88
94
(
1951
).
9.
Y.-M.
Cha
,
B. B.
Peters
,
U.
Birgersdotter-Green
, and
P.-S.
Chen
, “
A reappraisal of ventricular fibrillation threshold testing
,”
Am. J. Physiol.
264
,
H1005
1010
(
1993
).
10.
P. A. Fabiato, P. Coumel, R. Gourgon, and R. Saumont, “Le seuil de résponse synchrone des fibres myocardiques. Application à la comparaison expérimentale de l’efficacité des différentes formes de chocs électriques de défibrillation,” Arch. Mal Coeur 60, 527–544 (1967).
11.
C.
Lesigne
,
B.
Levy
,
R.
Saumont
,
P.
Birkui
,
A.
Bardou
, and
B.
Rubin
, “
An energy–time analysis of ventricular fibrillation and defibrillation thresholds with internal electrodes
,”
Med. Biol. Eng. Comp.
14
,
617
622
(
1976
).
12.
P.-S.
Chen
,
N.
Shibata
,
E. G.
Dixon
,
R. O.
Martin
, and
R. E.
Ideker
, “
Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability
,”
Circulation
73
,
1022
1028
(
1986
).
13.
M.
Gotoh
,
T.
Uchida
,
W. J.
Mandel
,
M. C.
Fishbein
,
P.-S.
Chen
, and
H. S.
Karagueuzian
, “
Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated cainine ventricle
,”
Circulation
95
,
2141
2154
(
1997
).
14.
C. D.
Swerdlow
,
C. T.
Peter
,
R. M.
Kass
,
E. S.
Gang
,
W. J.
Mandel
,
C.
Hwang
,
D. J.
Martin
, and
P.-S.
Chen
, “
Programming of implantable cardioverter-defibrillators based on the upper limit of vulnerability
,”
Circulation
95
,
1497
1504
(
1997
).
15.
C.
Hwang
,
C. D.
Swerdlow
,
R. M.
Kass
,
E. S.
Gang
,
W. J.
Mandel
,
C. T.
Peter
, and
P.-S.
Chen
, “
Upper limit of vulnerability reliably predicts the defibrillation threshold in humans
,”
Circulation
90
,
2308
2314
(
1994
).
16.
P.-S.
Chen
,
G. K.
Feld
,
J. M.
Kriett
,
M. M.
Mower
,
R. Y.
Tarazi
,
R. P.
Fleck
,
C. D.
Swerdlow
,
E. S.
Gang
, and
R. M.
Kass
, “
Relation between upper limit of vulnerability and defibrillation threshold in humans
,”
Circulation
88
,
186
192
(
1993
).
17.
G. R. Mines, “On circulating excitation in heart muscles and their possible relation to tachycardia and fibrillation,” Trans. R. Soc. Can. 4, 43–53 (1914).
18.
M. A.
Allessie
,
F. I. M.
Bonke
, and
F. J. G.
Schopman
, “
Circus movement in rabbit atrial muscle as a mechanism of tachycardia
,”
Circ. Res.
33
,
54
62
(
1973
).
19.
P.-S.
Chen
,
P.
Wolf
,
E. G.
Dixon
,
N. D.
Danieley
,
D. W.
Frazier
,
W. M.
Smith
, and
R. E.
Ideker
, “
Mechanism of ventricular vulnerability to single premature stimuli in open chest dogs
,”
Circ. Res.
62
,
1191
1209
(
1988
).
20.
D. W.
Frazier
,
P. D.
Wolf
,
J. M.
Wharton
,
A. S. L.
Tang
,
W. M.
Smith
, and
R. E.
Ideker
, “
Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium
,”
J. Clin. Invest.
83
,
1039
1052
(
1989
).
21.
C. J.
Wiggers
, “
The mechanism and nature of ventricular fibrillation
,”
Am. Heart J.
20
,
399
(
1940
).
22.
K. T. S.
Konings
,
C. J. H. J.
Kirchhof
,
J. R. L. M.
Smeets
,
H. J. J.
Wellens
,
O. C.
Penn
, and
M. A.
Allessie
, “
High-density mapping of electrically induced atrial fibrillation in humans
,”
Circulation
89
,
1665
1680
(
1994
).
23.
C.
Bonometti
,
C.
Hwang
,
D.
Hough
,
J. J.
Lee
,
M. C.
Fishbein
,
H. S.
Karagueuzian
, and
P.-S.
Chen
, “
Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation
,”
Circ. Res.
77
,
407
416
(
1995
).
24.
C.
Hwang
,
W.
Fan
, and
P.-S.
Chen
, “
Recurrent appearance of protective zones after an unsuccessful defibrillation shock
,”
Am. J. Physiol.
271
,
H1491
H1497
(
1996
).
25.
R. L.
Verrier
,
W. W.
Brooks
, and
B.
Lown
, “
Protective zone and the determination of vulnerability to ventricular fibrillation
,”
Am. J. Physiol.
234
,
H592
H596
(
1978
).
26.
Y.-M.
Cha
,
U.
Birgersdotter-Green
,
P. L.
Wolf
,
B. B.
Peters
, and
P.-S.
Chen
, “
The mechanisms of termination of reentrant activity in ventricular fibrillation
,”
Circ. Res.
74
,
495
506
(
1994
).
27.
B. H.
Kenknight
,
P. V.
Bayly
,
R. J.
Gerstle
,
D. L.
Rollins
,
P. D.
Wolf
,
W. M.
Smith
, and
R. E.
Ideker
, “
Regional capture of fibrillating ventricular myocardium: Evidence of an excitable gap
,”
Circ. Res.
77
,
849
855
(
1995
).
28.
A. T.
Winfree
, “
Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media
,”
Chaos
1
,
303
334
(
1991
).
29.
R. A.
Gray
,
J.
Jalife
,
A.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
, and
A. M.
Pertsov
, “
Nonstationary vortexlike reentrant activity as mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart
,”
Circulation
91
,
2454
2469
(
1995
).
30.
R. A.
Gray
,
J.
Jalife
,
A. V.
Panfilov
,
W. T.
Baxter
,
C.
Cabo
,
J. M.
Davidenko
,
A. M.
Pertsov
, and
P.
Hogeweg
, “
Mechanisms of cardiac fibrillation
,”
Science
270
,
1222
1223
(
1995
).
31.
P.-S.
Chen
,
P. D.
Wolf
,
S. D.
Melnick
,
N. D.
Danieley
,
W. M.
Smith
, and
R. E.
Ideker
, “
Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open chest dogs
,”
Circ. Res.
66
,
1544
1560
(
1990
).
32.
J. J.
Lee
,
K.
Kamjoo
,
D.
Hough
,
C.
Hwang
,
W.
Fan
,
M. C.
Fishbein
,
C.
Bonometti
,
T.
Ikeda
,
H. S.
Karagueuzian
, and
P.-S.
Chen
, “
Reentrant wave fronts in Wiggers’ stage II ventricular fibrillation: Characteristics, and mechanisms of termination and spontaneous regeneration
,”
Circ. Res.
78
,
660
675
(
1996
).
33.
T. Funada, T. Iwase, and T. Iwa, “Method for computerized display of epicardial maps,” Biol. Eng. Comput. 21, 418–423 (1983).
34.
P.-S.
Chen
,
N.
Shibata
,
P.
Wolf
,
E. G.
Dixon
,
N. D.
Danieley
,
M. B.
Sweeney
,
W. M.
Smith
, and
R. E.
Ideker
, “
Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks
,”
J. Clin. Invest.
77
,
810
823
(
1986
).
35.
D. W.
Frazier
,
W.
Krassowska
,
P.-S.
Chen
,
P. D.
Wolf
,
N. D.
Danieley
,
W. M.
Smith
, and
R. E.
Ideker
, “
Transmural activations and potentials on three-dimensional anisotropic canine myocardium
,”
Circ. Res.
63
,
135
146
(
1988
).
36.
P. F.
Cranefield
and
K.
Greenspan
, “
The rate of oxygen uptake of quiescent cardiac muscle
,”
J. Gen. Physiol.
44
,
235
249
(
1960
).
37.
T. Uchida, T. Ikeda,K. Kamjoo, D. Hough, W. J. Mandel, J. N. Weiss, P.-S. Chen, and H. S. Karagueuzian, “Mechanism of acceleration of functional reentry in the ventricle,” Pacing Cardiac Electrophysiol. 19, II-665 (1996) (abstract).
38.
K.
Kamjoo
,
T.
Uchida
,
T.
Ikeda
,
M. C.
Fishbein
,
A.
Garfinkel
,
J. N.
Weiss
,
H. S.
Karagueuzian
, and
P.-S.
Chen
, “
The importance of location and timing of electrical stimuli in terminating sustained functional reentry in isolated swine ventricular tissues—Evidence in support of a small reentrant circuit
,”
Circulation
96
,
2048
2060
(
1997
).
39.
A.
Garfinkel
,
P.-S.
Chen
,
D. O.
Walter
,
H. S.
Karagueuzian
,
B.
Kogan
,
S. J.
Evans
,
M.
Karpoukhin
,
C.
Hwang
,
T.
Uchida
,
M.
Gotoh
,
O.
Nwasokwa
,
P.
Sager
, and
J. N.
Weiss
, “
Quasiperiodicity and chaos in cardiac fibrillation
,”
J. Clin. Invest.
99
,
305
314
(
1997
).
40.
H. S. Karagueuzian, T. Ikeda, T. Uchida, D. Hough, C. Hwang, M. Gotoh, J. J. Lee, M. C. Fishbein, W. J. Mandel, J. N. Weiss, and P.-S. Chen, “Spiraling and disordered wavefronts in canine and human cardiac muscles. The role of refractory period shortening in the breakup of functionally-defined reentrant wavefronts,” Pacing Cardiac Electrophysiol. 18, II-831 (1995) (abstract).
41.
Y.-H.
Kim
,
A.
Garfinkel
,
T.
Ikeda
,
T.-J.
Wu
,
C. A.
Athill
,
J. N.
Weiss
,
H. S.
Karagueuzian
, and
P.-S.
Chen
, “
Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle: Further evidence for the quasiperiodic route to chaos hypothesis
,”
J. Clin. Invest.
100
,
2486
2500
(
1997
).
42.
W. E.
Garrey
, “
The nature of fibrillatory contraction of the heart—Its relation to tissue mass and form
,”
Am. J. Physiol.
33
,
397
414
(
1914
).
43.
Y. Y. Kwan, W. Fan, D. Hough, J. J. Lee, M. C. Fishbein, H. S. Karagueuzian, and P.-S. Chen, “Procainamide induced prevention of wavefront breakup—A novel mechanism of antiarrhythmic drug action,” Pacing Cardiac Electrophysiol. 20, 1121 (1997);
Y. Y.
Kwan
,
W.
Fan
,
K.
Kamjoo
,
D.
Hough
,
J. J.
Lee
,
M. C.
Fishbein
,
H. S.
Karageuzian
, and
P-S.
Chen
, “
The effects of procainamide on the characteristics of functional reentry in canine ventricular fibrillation
,” Circulation (in press).
44.
M. J. Janse, A. G. Kleber, A. Capucci, R. Coronel, and F. Wilms-Schopman, “Electrophysiological basis for arrhythmias caused by acute ischemia. Role of the subendocardium,” J. Mol. Cell Cardiol. 18, 339–355 (1986).
45.
R. J.
Damiano
,
P. K.
Smith
,
H. F.
Tripp
,
T.
Asano
,
K. W.
Small
,
J. E.
Lowe
,
R. E.
Ideker
, and
J. L.
Cox
, “
The effect of chemical ablation of the endocardium on ventricular fibrillation threshold
,”
Circulation
74
,
645
652
(
1986
).
46.
P.-S.
Chen
,
P. L.
Wolf
,
Y.-M.
Cha
,
B. B.
Peters
, and
S. L.
Topham
, “
Effects of subendocardial ablation on anodal supernormal excitation and ventricular vulnerability in open-chest dogs
,”
Circulation
87
,
216
229
(
1993
).
47.
S. J.
Worley
,
J. L.
Swain
,
P. G.
Colavita
,
W. M.
Smith
, and
R. E.
Ideker
, “
Development of an endocardial–epicardial gradient of activation rate during electrically induced sustained ventricular fibrillation in dogs
,”
Am. J. Cardiol.
55
,
813
820
(
1985
).
48.
A. A.
Bagdonas
,
J. H.
Stuckey
,
J.
Pierce
,
N. S.
Amer
, and
B. F.
Hoffman
, “
Effects of ischemia and hypoxia on the specialized conduction system of the canine heart
,”
Am. Heart J.
61
,
206
218
(
1961
).
49.
P. L.
Friedman
,
J. R.
Stewart
,
J. J.
Fengolio
, and
A. L.
Wit
, “
Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs: In vitro and in vivo correlation
,”
Circ. Res.
33
,
597
611
(
1973
).
50.
R. F.
Gilmour
, Jr.
and
D. P.
Zipes
, “
Different electrophysiological response of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis
,”
Circ. Res.
46
,
814
825
(
1980
).
51.
Y.-M.
Cha
,
T.
Uchida
,
P. L.
Wolf
,
B. B.
Peters
,
M. C.
Fishbein
,
H. S.
Karagueuzian
, and
P.-S.
Chen
, “
Effects of chemical subendocardial ablation on activation rate gradient during ventricular fibrillation
,”
Am. J. Physiol.
269
,
H1998
H2009
(
1995
).
52.
A. T.
Winfree
, “
Sudden cardiac death: A problem in topology
,”
Sci. Am.
248
,
144
(
1983
).
53.
A. T. Winfree, “How does ventricular tachycardia decay into ventricular fibrillation?” in Cardiac Mapping, edited by M. Shenasa, M. Borggrefe, and G. Breithardt (Futura Publishing Co., Mount Kisco, NY, 1993), pp. 655–682.
This content is only available via PDF.
You do not currently have access to this content.