We review the convergence of chaotic integrals computed by Monte Carlo simulation, the trace method, dynamical zeta function, and Fredholm determinant on a simple one-dimensional example: the parabola repeller. There is a dramatic difference in convergence between these approaches. The convergence of the Monte Carlo method follows an inverse power law, whereas the trace method and dynamical zeta function converge exponentially, and the Fredholm determinant converges faster than any exponential.

1.
P.
Cvitanović
, “
Invariant measurements of strange sets in terms of cycles
,”
Phys. Rev. Lett.
61
,
2729
2732
(
1988
).
2.
L. P.
Kadanoff
and
C.
Tang
, “
Escape from strange repellers
,”
Proc. Natl. Acad. Sci., USA
81
,
1276
1279
(
1984
).
3.
T.
Tel
, “
Escape rate from strange sets as an eigenvalue
,”
Phys. Rev. A
36
,
1502
1505
(
1987
).
4.
A. Grothendieck, “Produits tensoriels topologiques et éspaces nucléaires,” in Memoirs of the American Mathematical Society (American Mathematical Society, Providence, 1955), Vol. 16.
5.
J. Milnor and W. Thurston, “On iterated maps of the interval,” in Dynamical Systems: Proceedings of the Special Year Held at the University of Maryland, College Park, 1986–87, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1988), Vol. 1342, pp. 465–563.
6.
K. T. Hansen, “Symbolic dynamics in chaotic systems,” Ph.D. thesis, University of Oslo, 1993.
7.
R.
Artuso
,
E.
Aurell
, and
P.
Cvitanović
, “
Recycling of strange sets: I. Cycle expansions
, ”
Nonlinearity
3
,
325
359
(
1990
).
8.
P.
Cvitanović
, “
Dynamical averaging in terms of periodic orbits
,”
Physica D
83
,
109
123
(
1995
).
9.
H. H.
Rugh
, “
The correlation spectrum for hyperbolic analytic maps
,”
Nonlinearity
5
,
1237
1263
(
1992
).
10.
R.
Stoop
and
J.
Parisi
Evaluation of probabilistic and dynamic invariants from finite symbolic substrings—comparison between 2 approaches
,”
Physica D
58
,
325
330
(
1992
).
11.
G.
Keller
, “
On the rate of convergence to equilibrium in one-dimensional systems
,”
Commun. Math. Phys.
96
,
181
193
(
1984
).
12.
E.
Aurell
, “
Convergence of dynamic zeta-functions
,”
J. Stat. Phys.
58
,
967
995
(
1990
).
13.
P.
Cvitanović
, “
Periodic orbits as the skeleton of classical and quantum chaos
,”
Physica D
51
,
138
151
(
1991
).
14.
R.
Mainieri
, “
Zeta function for the Lyapunov exponent of a product of random matrices
,”
Phys. Rev. Lett.
68
,
1965
1968
(
1992
).
15.
R.
Mainieri
, “
Cycle expansions with pruned orbits have branch-points
,”
Physica D
83
,
206
215
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.