Structure of the periodic accelerator orbits of the Harper map is investigated in detail from the viewpoint of underlying scenario of chaos in the area preserving nontwist map. Since the twist function of the Harper map is free from the polynomial local approximation, it admits rigorous treatment for the entire range of phase variable. The results obtained in the present analysis describes generic novel phenomena, which are outside of the applicability of the Kolmogorov-Arnol’d-Moser theory.
REFERENCES
1.
R. S. MacKay and J. D. Meiss (editors), Hamiltonian Dynamical Systems, a reprint selection (Adam Hilger, London, 1987).
2.
I. E. Reichl, The Transition to Chaos in Conservative Classical Systems (Springer-Verlag, New York, 1992).
3.
4.
5.
6.
D.
del-Castillo-Negrete
, J. M.
Greene
, and P. J.
Morrison
, Physica D
91
, 1
(1996
).7.
D.
del-Castillo-Negrete
and P. J.
Morrison
, Phys. Fluids A
5
, 948
(1993
).8.
9.
10.
P.
Leboeuf
, J.
Kurchan
, M.
Feingold
, and D. P.
Arovas
, Phys. Rev. Lett.
65
, 3076
(1990
).11.
T.
Geisel
, R.
Ketzmerick
, and G.
Petschel
, Phys. Rev. Lett.
67
, 3635
(1991
).12.
R.
Lima
and D. L.
Shepelyansky
, Phys. Rev. Lett.
67
, 1377
(1991
).13.
G. M.
Zaslavski|ı
, M. Yu.
Zakharov
, R. Z.
Sagdeev
, D. A.
Usikov
, and A. A.
Chernikov
, Sov. Phys. JETP
64
, 294
(1986
).14.
S.
Saitoô
, Y.
Nomura
, and Y. H.
Ichikawa
, Prog. Theor. Phys.
94
, 745
(1995
).15.
16.
T.
Shinbrot
, L.
Bresler
, and J. M.
Ottino
, Physica D
93
, 191
(1996
).17.
18.
19.
R. de Vogelaere, Contributions ot the Theory of Nonlinear Oscillations Vol. IV, edited by S. Lefschetz (Princeton University Press, Princeton, NJ, 1958).
20.
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.