We propose a method to explore invariant measures of dynamical systems. The method is based on numerical tools which directly compute invariant sets using a subdivision technique, and invariant measures by a discretization of the Frobenius-Perron operator. Appropriate visualization tools help to analyze the numerical results and to understand important aspects of the underlying dynamics. This will be illustrated for examples provided by the Lorenz system.

1.
M.
Dellnitz
and
A.
Hohmann
, “
A subdivision algorithm for the computation of unstable manifolds and global attractors
,”
Num. Math.
75
,
293
317
(
1997
).
2.
T. Y.
Li
, “
Finite approximation of the Frobenius-Perron operator, a solution to Ulam’s conjecture
,”
J. Appr. Theory
17
,
177
186
(
1976
).
3.
M. Dellnitz and O. Junge, “On the approximation of complicated dynamical behavior,” Preprint (1996).
4.
Yu. Kifer, “Computations in dynamical systems via random perturbations,” Preprint (1996).
5.
M. Dellnitz and A. Hohmann, “The computation of unstable manifolds using subdivision and continuation, in Nonlinear Dynamical Systems and Chaos, edited by H. W. Broer, S. A. van Gils, I. Hoveijn, and F. Takens, PNLDE 19 (Birkhäuser, Basel, 1996), pp. 449–459.
6.
F. Y.
Hunt
, “
A Monte Carlo approach to the approximation of invariant measures, National Institute of Standards and Technology
,”
NISTIR
4980
(
1993
).
7.
J.
Ding
,
Q.
Du
, and
T. Y.
Li
, “
High order approximation of the Frobenius-Perron operator
,”
Appl. Math. Comp.
53
,
151
171
(
1993
).
8.
R. Guder, M. Dellnitz, and E. Kreuzer, “An adaptive method for the approximation of the generalized cell mapping,” to appear in Chaos Solitons Fractals (1997).
9.
L. J.
Doctor
and
J. G.
Torborg
, “
Display techniques for octree-encoded objects
,”
IEEE Comput. Graph. Appl.
1
(
3
),
29
38
(
1981
).
10.
I.
Gargantini
, “
Linear octrees for fast processing of three-dimensional objects
,”
Comput. Graph. Image Process.
20
(
4
),
365
374
(
1982
).
11.
J.
Wilhelms
and
A.
Van Gelder
, “
Octrees for faster isosurface generation
,”
ACM Trans. Graph.
11
(
3
),
201
227
(
1992
).
12.
M.
Levoy
, “
Efficient ray tracing of volume data
,”
ACM Trans. Graph.
9
(
3
),
245
261
(
1990
).
13.
M.
Rumpf
,
A.
Schmidt
, and
K. G.
Siebert
, “
Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines
,”
Comput. Graphics Forum
15
(
2
),
129
141
(
1996
).
14.
M. Ohlberger and M. Rumpf, “Hierarchical and adaptive visualization on nested grids,” Preprint 22, Universität Freiburg (1996), to appear in Computing.
15.
M. Geiben and M. Rumpf, “Visualization of finite elements and tools for numerical analysis,” Advances in Scientific Visualization, edited by F. Post and A. H. Hin (Springer, New York, 1993).
16.
M.
Rumpf
and
A.
Wierse
, “
GRAPE, eine objektorientierte Visualisierungs- und Numerikplattform
,”
Inform. Forsch. Entwick.
7
,
145
151
(
1992
).
17.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1986).
This content is only available via PDF.
You do not currently have access to this content.