Numerical solutions to a model equation that describes cell population dynamics are presented and analyzed. A distinctive feature of the model equation (a hyperbolic partial differential equation) is the presence of delayed arguments in the time (t) and maturation (x) variables due to the nonzero length of the cell cycle. This transport like equation balances a linear convection with a nonlinear, nonlocal, and delayed reaction term. The linear convection term acts to impress the value of u(t,x=0) on the entire population while the death term acts to drive the population to extinction. The rich phenomenology of solution behaviour presented here arises from the nonlinear, nonlocal birth term. The existence of this kinetic nonlinearity accounts for the existence and propagation of soliton‐like or front solutions, while the increasing effect of nonlocality and temporal delays acts to produce a fine periodic structure on the trailing part of the front. This nonlinear, nonlocal, and delayed kinetic term is also shown to be responsible for the existence of a Hopf bifurcation and subsequent period doublings to apparent ‘‘chaos’’ along the characteristics of this hyperbolic partial differential equation. In the time maturation plane, the combined effects of nonlinearity, nonlocality, and delays leads to solution behaviour exhibiting spatial chaos for certain parameter values. Although analytic results are not available for the system we have studied, consistency and validation of the numerical results was achieved by using different numerical methods. A general conclusion of this work, of interest for the understanding of any biological system modeled by a hyperbolic delayed partial differential equation, is that increasing the spatio‐temporal delays will often lead to spatial complexity and irregular wave propagation.

1.
J. A. J. Metz and O. Diekmann, in The Dynamics of Physiologically Structured Populations (Springer-Verlag, New York, 1986).
2.
M. C.
Mackey
and
J. G.
Milton
,
Commun. Theor. Biol.
1
,
299
(
1990
).
3.
M. C.
Mackey
and
R.
Rudnicki
,
J. Math. Biol.
33
,
89
(
1994
).
4.
A. D.
Rey
and
M. C.
Mackey
,
Can. Appl. Math. Qu.
1
,
61
(
1993
).
5.
A. D.
Rey
and
M. C.
Mackey
,
Chaos
2
,
231
(
1993
).
6.
A. D.
Rey
and
M. C.
Mackey
,
Physica D
80
,
120
(
1995
).
7.
A. D.
Rey
and
M. C.
Mackey
,
Physica D
86
,
373
(
1995
).
8.
M. C.
Mackey
,
Blood
51
,
941
(
1978
).
9.
W. P.
Hammond
,
T. C.
Boone
,
R. E.
Donahue
,
L. M.
Souza
, and
D. C.
Dale
,
Blood
76
,
523
(
1990
).
10.
A. R.
Migliaccio
,
G.
Migliaccio
,
D. C.
Dale
, and
W. P.
Hammond
,
Blood
75
,
1951
(
1990
).
11.
M. C.
Mackey
and
H.
Schwegler
,
J. Stat. Phys.
70
,
281
(
1993
).
12.
H.
Schwegler
and
M. C.
Mackey
,
J. Math. Biol.
32
,
761
(
1994
).
13.
A.
Lasota
,
Nonlin. Anal.
5
,
1181
(
1981
).
14.
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson, Molecular Biology of the Cell (Garland, New York, 1983).
15.
K. L.
Cooke
and
Z.
Grossman
,
J. Math. Anal. Appl.
86
,
592
(
1982
).
16.
S. P.
Blythe
,
R. M.
Nisbet
, and
W. S. C.
Gurney
,
Theor. Pop. Biol.
25
,
289
(
1984
).
17.
S. P.
Blythe
,
R. M.
Nisbet
,
W. S. C.
Gurney
, and
N.
MacDonald
,
J. Math. Anal. Appl.
109
,
388
(
1985
).
18.
N. Macdonald, Biological Delay Systems: Linear Stability Theory (Cambridge University Press, Cambridge, 1989).
19.
R. F. V.
Anderson
,
Math. Biosci.
105
,
81
(
1991
).
20.
R. F. V.
Anderson
,
J. Math. Anal. Appl.
163
,
184
(
1992
).
21.
R. F. V.
Anderson
,
J. Dyn. Diff. Eqn.
5
,
105
(
1993
).
22.
M. C.
Mackey
and
P.
Dörmer
,
Cell Tissue Kinet.
15
,
381
(
1982
).
23.
C. S.
Potten
and
M.
Loeffler
,
Development
110
,
1001
(
1990
).
24.
G. C.
Nooney
,
Biophys. J.
7
,
69
(
1967
).
25.
D. G.
Oldfield
,
Bull. Math. Biophy.
28
,
545
(
1966
).
26.
H. von Foerster, The Kinetics of Cellular Proliferation, edited by F. Stohlman (Grune and Stratton, New York, 1959).
27.
S. I.
Rubinow
,
Biophys. J.
8
,
1055
(
1968
).
28.
E. Zauderer, Partial Differential Equations of Applied Mathematics (Wiley, New York, 1983).
29.
C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics (Springer-Verlag, New York, 1984).
30.
E. Becker, G. F. Carey, and J. Tinsley Oden, Finite Elements: An Introduction (Prentice-Hall, Englewood Cliffs, NJ, 1981).
31.
L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1982).
32.
P.
Brunovsky′
,
Nonlin. Anal.
7
,
167
(
1983
).
33.
P.
Brunovsky′
and
J.
Komorni′k
,
J. Math. Anal. Appl.
104
,
235
(
1984
).
34.
A.
Lasota
,
K.
Loskot
, and
M. C.
Mackey
,
Acta Biotheor.
39
,
1
(
1991
).
35.
K.
Loskot
,
J. Diff. Eqn.
58
,
1
(
1985
).
36.
R.
Rudnicki
,
Erg. Theor. Dynam. Sys.
5
,
437
(
1985
).
37.
R.
Rudnicki
,
Bull. Pol. Acad. Sci. Math.
35
,
289
(
1987
).
38.
R.
Rudnicki
,
J. Math. Anal. Appl.
132
,
14
(
1988
).
39.
P.
Collet
and
J-P.
Eckmann
,
Nonlinearity
6
,
1265
(
1992
).
40.
V. I. Karpman, Non-linear Waves in Dispersive Media (Pergamon, Oxford, 1975).
41.
J. Hale, Theory of Functional Differential Equations (Springer-Verlag, New York, 1977).
42.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Physica D
7
,
181
(
1983
).
43.
P.
Battelino
,
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Physica D
32
,
296
(
1988
).
44.
S.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Phys. Lett. A
107
,
51
(
1985
).
45.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Science
238
,
632
(
1987
).
46.
J. M.
Aguirregabiria
and
J. R.
Etxebarria
,
Phys. Lett. A
122
,
241
(
1987
).
47.
R.
Crabb
,
J.
Losson
, and
M.
Mackey
,
Proc. First World Cong. Nonlin. Anal.
4
,
3125
(
1996
).
48.
K.
Ikeda
,
Appl. Phys. B
28
,
257
(
1979
).
49.
K.
Ikeda
and
K.
Matsumoto
,
Physica D
29
,
223
(
1987
).
50.
K.
Ikeda
,
K.
Kondo
, and
O.
Akimoto
,
Phys. Rev. Lett.
49
,
1467
(
1982
).
51.
J.-N
Li
and
B.-L.
Hao
,
Commun. Theor. Phys.
11
,
265
(
1989
).
52.
J.
Losson
,
M.
Mackey
, and
A.
Longtin
,
Chaos
3
,
1
(
1993
).
53.
A. Sharkovsky, Yu Maistrenko, and E. Romanenko, Difference Equations and Their Applications (Kluwer Academic, New York, 1993).
54.
R.
Vallée
and
C.
Delisle
,
Phys. Rev. A
34
,
309
(
1986
).
55.
L. Glass and M. C. Mackey, From Clocks to Chaos (Princeton University Press, Princeton, NJ, 1988).
56.
A.
Lasota
,
M. C.
Mackey
, and
M.
Wazewska-Czyzewksa
,
J. Math. Bio.
19
,
43
(
1981
).
57.
J. G.
Milton
and
M. C.
Mackey
,
J. R. Colloq. Phys. London
23
,
236
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.