In recent years there has been an increasing number of papers in the literature, applying the methods and techniques of Nonlinear Dynamics to the time series of electrical activity in normal electrocardiograms (ECGs) of various human subjects. Most of these studies are based primarily on correlation dimension estimates, and conclude that the dynamics of the ECG signal is deterministic and occurs on a chaotic attractor, whose dimension can distinguish between healthy and severely malfunctioning cases. In this paper, we first demonstrate that correlation dimension calculations must be used with care, as they do not always yield reliable estimates of the attractor’s ‘‘dimension.’’ We then carry out a number of additional tests (time differencing, smoothing, principal component analysis, surrogate data analysis, etc.) on the ECGs of three ‘‘normal’’ subjects and three ‘‘heavy smokers’’ at rest and after mild exercising, whose cardiac rhythms look very similar. Our main conclusion is that no major dynamical differences are evident in these signals. A preliminary estimate of three to four basic variables governing the dynamics (based on correlation dimension calculations) is updated to five to six, when temporal correlations between points are removed. Finally, in almost all cases, the transition between resting and mild exercising seems to imply a small increase in the complexity of cardiac dynamics.

1.
A. M. Kalz, Physiology of the Heart (Raven, New York, 1992).
2.
E. L.
Michelsbn
and
J.
Morganroth
, “
Spontaneous variability of complex ventricular arrhythmias detected by long-term electrocardiographic recording
,”
Circulation
61
,
600
(
1980
).
3.
T. A.
Denton
,
G. A.
Diamond
,
R. H.
Helfart
,
S.
Khan
, and
H.
Karagueuzian
, “
Fascinating rhythm; A primer on chaos theory and its application to cardiology
,”
Am. Heart J., St. Louis
120
,
1419
(
1990
).
4.
A. L.
Goldberger
and
B. J.
West
, “
Applications of nonlinear dynamics to clinical cardiology
,”
Ann. NY Acad. Sci.
504
,
195
(
1987
).
5.
A.
Babloyantz
and
A.
Destexhe
, “
Is the normal heart a periodic oscilla tor?
,”
Biol. Cyb.
58
,
203
(
1988
).
6.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of a strange attractor
,”
Physica D
9
,
189
(
1983
).
7.
H. G. Schuster, Deterministic Chaos, 2nd ed. (Physik-Verlag, Weinheim, 1988).
8.
P. Berge, Y. Pomeau, and C. Vidal, Order Within Chaos (Hermann, Paris, 1984) [and (Wiley, New York, 1986)]
9.
A. A. Tsonis, Chaos: From Theory to Applications (Plenum, New York, 1992).
10.
A.
Provenzale
,
L. A.
Smith
,
R.
Vio
and
G.
Murante
, “
Distinguishing low-dimensional dynamics and randomness in measured time series
,”
Physica D
58
,
31
(
1992
).
11.
J.
Theiler
, “
Spurious dimension from correlation algorithms applied to limited time-series data
,”
Phys. Rev. A
34
,
2427
(
1986
).
12.
D. S.
Broomhead
and
G. P.
King
, “
Extracting qualitative dynamics from experimental data
,”
Physica D
20
,
217
(
1986
).
13.
R. D.
Berger
,
D. S.
Rosenbaum
and
R. J.
Cohen
, “
Is the power spectrum of the QRS complex related to a fractal His-Purkinje system?
,”
Am. J. Cardiol.
71
,
430
(
1993
).
14.
G. A.
Myers
,
G. J.
Martin
,
N. M.
Magin
,
P. S.
Benett
,
J. W.
Schaad
,
J. S.
Weiss
,
M.
Lesch
, and
D. H.
Singer
, “
Power spectral analysis of heart rate variability in sudden cardiac death: Comparison to other methods
,”
IEEE Trans. Biomed. Eng.
BE-33
,
1149
(
1986
).
15.
A. L.
Goldberger
,
V.
Bhargava
,
B. J.
West
, and
A. J.
Mandell
, “
Some observations on the question: Is vehicular fibrillation “chaos”?
,”
Physica D
19
,
282
(
1986
).
16.
P. S.
Chen
,
P. D.
Wolf
,
E. G.
Dixon
,
N. D.
Danieley
,
D. W.
Frazier
,
W. M.
Smith
, and
R. E.
Ideken
, “
Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs
,”
Circ. Res.
62
,
1191
(
1988
).
17.
A.
Garfmkel
,
H.
Karagueuzian
,
S.
Khan
, and
G.
Diamond
, “
Is theproarrhythmic effect of quinidine a chaotic phenomenon? (abstract)
,”
J. Am. Colloid. Cardiol. A
13
,
186
(
1989
).
18.
S. J.
Evans
,
S. S.
Khan
,
A.
Garfinkle
,
R. M.
Kass
,
A.
Aldano
, and
G. A.
Diamond
, “
Is ventricular fibrillation random or chaotic? (abstract)
,”
Circulation
80
,
11
(
1989
).
19.
F.
Ravelli
and
R.
Andolim
, “
Complex dynamics underlying the human electrocardiogram
,”
Biol. Cyb.
67
,
57
(
1992
).
20.
F. Takens, “Detecting strange attractors in turbulence,” in Lecture Notes in Mathematics, edited by D. A. Rand and L. S. Young (Springer-Verlag, Berlin, 1981), Vol. 898, pp. 366–381.
21.
M. A.
Nerenberg
and
C.
Essex
, “
Correlation dimension and systematic geometric effects
,”
Phys. Rev. A
42
,
7065
(
1986
).
22.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates in strange attractor from mutual information
,”
Phys. Rev. A
33
,
1134
(
1986
).
23.
A. L.
Goldberger
,
V.
Bhargava
,
B. J.
West
, and
A. J.
Mandell
, “
On a mechanism of cardiac electrical stability, the fractal hypothesis
,”
Biophys. J.
48
,
525
(
1985
).
24.
J. O.
Valcano
,
H. V.
Huikuri
,
K. E. J.
Airaksinen
,
M. K.
Linnaluoto
, and
J. T.
Takkunen
, “
Changes in frequency domain measures of heart rate variability in relation of the onset of ventricular tachycardia in acutemyocardial information
,”
Int. J. Cardiol.
38
,
177
(
1985
).
25.
B.
Pomeranz
,
R. J. B.
McCaulay
,
M. A.
Candill
,
I.
Kutz
,
D.
Adam
,
D.
Gordon
,
K. M.
Kilborn
,
A. C.
Barger
,
D. C.
Shannon
,
R. J.
Cohen
, and
H.
Benson
, “
Assessment of autonomic function in humans by heart rate spectral analysis
,”
Am. J. Physiol.
248
,
H151
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.