The Rössler system has been exhaustively studied for parameter values (a∈[0.33,0.557],b=2,c=4). Periodic orbits have been systematically extracted from Poincaré maps and the following problems have been addressed: (i) all low order periodic orbits are extracted, (ii) encoding of periodic orbits by symbolic dynamics (from 2 letters up to 11 letters) is achieved, (iii) some rules of growth and of pruning of the periodic orbits population are obtained, and (iv) the templates of the attractors are elaborated to characterize the attractors topology.
Topics
Dynamical systems
REFERENCES
1.
O. E.
Rössler
, “An equation for continuous chaos
Phys. Lett. A
57
, 397
–398
(1976
).2.
G.
Gouesbet
, “Reconstruction of standard and inverse vector fields equivalent to a Rössler system
,” Phys. Rev. A
44
, 6264
–6280
(1991
).3.
G.
Gouesbet
and J.
Maquet
, “Construction of phenomenological models from numerical scalar time series
,” Physica D
58
, 202
–215
(1992
).4.
G. B.
Mindlin
, X. J.
Hou
, H. G.
Solari
, R.
Gilmore
, and N. B.
Tufillaro
, “Classification of strange attractors by integers
,” Phys. Rev. Lett.
64
, 2350
–2353
(1990
).5.
G. B.
Mindlin
and R.
Gilmore
, “Topological analysis and synthesis of chaotic time series
,” Physica D
58
, 229
–242
(1992
).6.
P. Dutertre, “Caractérisation des attracteurs étranges a partir de la population d’orbites périodiques,” Thèse de troisième cycle, LESP, Rouen (unpublished).
7.
C.
Letellier
, P.
Dutertre
, and G.
Gouesbet
, “Characterization of the Lorenz system taking into account the equivariance of the vector field
,” Phys. Rev. E
49
, 3492
–3495
(1994
).8.
O.
Biham
and W.
Wenzel
, “Unstable periodic orbits and the symbolic dynamics of the complex Hénon map
,” Phys. Rev. A
42
, 4629
–4646
(1990
).9.
P.
Cvitanović
and B.
Eckhardt
, “Symmetry decomposition of chaotic dynamics
, Nonlinearity
6
, 277
–311
(1993
).10.
J. M. T. Thompson and J. M. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).
11.
N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos (Addison-Wesley, New York, 1992)
12.
G. B.
Mindlin
, R.
López-Ruiz
, H. G.
Solari
, and R.
Gilmore
, “Horseshoe implications
,” Phys. Rev. E
48
, 4297
–4304
(1993
).13.
T.
Hall
, “Weak universality in two-dimensional transitions to chaos
,” Phys. Rev. Lett.
71
, 58
–61
(1993
).14.
N. B. Tufillaro, “Braid analysis of (low-dimensional) chaos” (preprint, July 1993).
15.
A. N.
Sarkovskii
, “Coexistence of cycles of a continuous, map of a line into itself
,” Ukr. Math. Z.
16
, 61
–71
(1964
).16.
P.
Stefan
, “A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line
,” Comm. Math. Phys.
54
, 237
–248
(1977
).17.
L. P.
Sil’nikov
, “The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,” Dokl. Akad. Nauk SSSR
1
, 54
–58
(1967
).18.
P.
Gaspard
, R.
Kapral
, and G.
Nicolis
, “Bifurcation phenomena near homoclinic systems: A two parameter analysis
,” J. Stat. Phys.
35
, 697
–727
(1984
).19.
C. Letellier, “Caractérisation topologique et reconstruction des attracteurs étranges,” These de troisiéme cycle, LESP, Rouen, 1994.
20.
P.
Melvin
and N. B.
Tufillaro
, “Templates and framed braids
,” Phys. Rev. A
44
, 3419
–3422
(1991
).21.
L.
Le Sceller
, C.
Letellier
, and G.
Gouesbet
, “Algebraic evaluation of linking numbers of unstable periodic orbits in chaotic attractors
,” Phys. Rev. E
49
, 4693
–4695
(1994
).
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.