The Rössler system has been exhaustively studied for parameter values (a∈[0.33,0.557],b=2,c=4). Periodic orbits have been systematically extracted from Poincaré maps and the following problems have been addressed: (i) all low order periodic orbits are extracted, (ii) encoding of periodic orbits by symbolic dynamics (from 2 letters up to 11 letters) is achieved, (iii) some rules of growth and of pruning of the periodic orbits population are obtained, and (iv) the templates of the attractors are elaborated to characterize the attractors topology.

1.
O. E.
Rössler
, “
An equation for continuous chaos
Phys. Lett. A
57
,
397
398
(
1976
).
2.
G.
Gouesbet
, “
Reconstruction of standard and inverse vector fields equivalent to a Rössler system
,”
Phys. Rev. A
44
,
6264
6280
(
1991
).
3.
G.
Gouesbet
and
J.
Maquet
, “
Construction of phenomenological models from numerical scalar time series
,”
Physica D
58
,
202
215
(
1992
).
4.
G. B.
Mindlin
,
X. J.
Hou
,
H. G.
Solari
,
R.
Gilmore
, and
N. B.
Tufillaro
, “
Classification of strange attractors by integers
,”
Phys. Rev. Lett.
64
,
2350
2353
(
1990
).
5.
G. B.
Mindlin
and
R.
Gilmore
, “
Topological analysis and synthesis of chaotic time series
,”
Physica D
58
,
229
242
(
1992
).
6.
P. Dutertre, “Caractérisation des attracteurs étranges a partir de la population d’orbites périodiques,” Thèse de troisième cycle, LESP, Rouen (unpublished).
7.
C.
Letellier
,
P.
Dutertre
, and
G.
Gouesbet
, “
Characterization of the Lorenz system taking into account the equivariance of the vector field
,”
Phys. Rev. E
49
,
3492
3495
(
1994
).
8.
O.
Biham
and
W.
Wenzel
, “
Unstable periodic orbits and the symbolic dynamics of the complex Hénon map
,”
Phys. Rev. A
42
,
4629
4646
(
1990
).
9.
P.
Cvitanović
and
B.
Eckhardt
, “
Symmetry decomposition of chaotic dynamics
,
Nonlinearity
6
,
277
311
(
1993
).
10.
J. M. T. Thompson and J. M. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).
11.
N. B. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos (Addison-Wesley, New York, 1992)
12.
G. B.
Mindlin
,
R.
López-Ruiz
,
H. G.
Solari
, and
R.
Gilmore
, “
Horseshoe implications
,”
Phys. Rev. E
48
,
4297
4304
(
1993
).
13.
T.
Hall
, “
Weak universality in two-dimensional transitions to chaos
,”
Phys. Rev. Lett.
71
,
58
61
(
1993
).
14.
N. B. Tufillaro, “Braid analysis of (low-dimensional) chaos” (preprint, July 1993).
15.
A. N.
Sarkovskii
, “
Coexistence of cycles of a continuous, map of a line into itself
,”
Ukr. Math. Z.
16
,
61
71
(
1964
).
16.
P.
Stefan
, “
A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line
,”
Comm. Math. Phys.
54
,
237
248
(
1977
).
17.
L. P.
Sil’nikov
, “
The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,”
Dokl. Akad. Nauk SSSR
1
,
54
58
(
1967
).
18.
P.
Gaspard
,
R.
Kapral
, and
G.
Nicolis
, “
Bifurcation phenomena near homoclinic systems: A two parameter analysis
,”
J. Stat. Phys.
35
,
697
727
(
1984
).
19.
C. Letellier, “Caractérisation topologique et reconstruction des attracteurs étranges,” These de troisiéme cycle, LESP, Rouen, 1994.
20.
P.
Melvin
and
N. B.
Tufillaro
, “
Templates and framed braids
,”
Phys. Rev. A
44
,
3419
3422
(
1991
).
21.
L.
Le Sceller
,
C.
Letellier
, and
G.
Gouesbet
, “
Algebraic evaluation of linking numbers of unstable periodic orbits in chaotic attractors
,”
Phys. Rev. E
49
,
4693
4695
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.