We present the point of view that both the vortices and the east–west zonal winds of Jupiter are confined to the planet’s shallow weather layer and that their dynamics is completely described by the weakly dissipated, weakly forced quasigeostrophic (QG) equation. The weather layer is the region just below the tropopause and contains the visible clouds. The forcing mimics the overshoot of fluid from an underlying convection zone. The late‐time solutions of the weakly forced and dissipated QG equations appear to be a small subset of the unforced and undissipated equations and are robust attractors. We illustrate QG vortex dynamics and attempt to explain the important features of Jupiter’s Great Red Spot and other vortices: their shapes, locations with respect to the extrema of the east–west winds, stagnation points, numbers as a function of latitude, mergers, break‐ups, cloud morphologies, internal distributions of vorticity, and signs of rotation with respect to both the planet’s rotation and the shear of their surrounding east–west winds. Initial‐value calculations in which the weather layer starts at rest produce oscillatory east–west winds. Like the Jovian winds, the winds are east–west asymmetric and have Kármán vortex streets located only at the west‐going jets. From numerical calculations we present an empirically derived energy criterion that determines whether QG vortices survive in oscillatory zonal flows with nonzero potential vorticity gradients. We show that a recent proof that claims that all QG vortices decay when embedded in oscillatory zonal flows is too restrictive in its assumptions. We show that the asymmetries in the cloud morphologies and numbers of cyclones and anticyclones can be accounted for by a QG model of the Jovian atmosphere, and we compare the QG model with competing models.

1.
J.-I.
Yano
and
G. R.
Flierl
, “
Jupiter’s Great Red Spot: Compactness Conditions, Stability
,”
Ann. Geophys.
12
,
1
18
(
1994
).
2.
G. P.
Williams
and
T.
Yamagata
, “
Geostrophic Regimes, intermediate Solitary Vortices and Jovian Eddies
,”
J. Atmos. Sci.
41
,
453
478
(
1984
).
3.
P. S.
Marcus
, “
Numerical Simulations of Jupiter’s Great Red Spot
,”
Nature
331
,
693
696
(
1988
).
4.
T. E.
Dowling
and
A. P.
Ingersoll
, “
Potential Vorticity and Layer Thickness Variations in the Flow Around Jupiter’s Great Red Spot and Ẁhite Oval BC
,”
J. Atmos. Sci.
45
,
1380
1396
(
1988
).
5.
The values of Lr used in the three proceeding references all agree within a factor of 3 and are inferred from observations of wavelengths and speeds. In analyzing a thin layer of the Jovian atmosphere the internal rather than the external deformation radius is used which is the product of the square root of the effective gravity, the square root of the vertical length over which the flow changes (which is much smaller than the thickness of the gaseous layer of the planet), and the inverse of the local Coriolis frequency. The effective gravity is proportional to the square of the local Brunt-Väisälä frequency. Although we know how the Coriolis frequency changes with latitude, we do not know how the Brunt-Väisälä frequency of the weather layer changes, so we cannot determine Lr everywhere by observing it only at the latitude of the GRS.
6.
P. S.
Marcus
, “
Jupiter’s Great Red Spot and Other Vortices
,”
Ann. Rev. Astron. Astrophys.
431
,
523
573
(
1993
).
7.
S. S.
Limaye
, “
Jupiter: New Estimates of the Mean Zonal Flow at the Cloud Level
,”
Icarus
65
,
335
352
(
1986
).
8.
G. P.
Williams
and
J. P.
Wilson
, “
The Stability and Genesis of Rossby Vortices
,”
J. Atmos. Sci.
45
,
207
241
(
1988
).
9.
G. E.
Hunt
, “
The Atmospheres of the Outer Planets
,”
Ann. Rev. Earth Planet. Sci.
11
,
415
459
(
1983
).
10.
S. V.
Antipov
,
M. V.
Nezlin
,
E. N.
Snezhkin
, and
A. S.
Trubnikov
, “
Rossby Soliton in the Laboratory
,”
JETP
82
,
145
160
(
1982
).
11.
P. S.
Marcus
, “
Vortex Dynamics in a Shearing Zonal Flow
,”
J. Fluid Mech.
215
,
393
430
(
1990
).
12.
P. S. Marcus, “Numerical Simulation of Quasigeostrophic Flow Using Vortex and Spectral Methods,” in Numerical Analysis, Proceedings of Conference of June 1985—Dundee, Scotland, edited by D. F. Griffiths and G. A. Watson (Longman Scientific and Technical Press, London, 1986), pp. 125–139.
13.
P. S.
Marcus
, “
Spatial Self-Organization of Vortices in Chaotic Shearing Flows
,”
Nucl. Phys. B (Proceedings Suppl.)
2
,
127
138
(
1988
).
14.
S.
Kida
, “
Motion of an elliptic vortex in a uniform shear flow
,”
J. Phys. Soc. Jpn.
50
,
3517
3520
(
1981
).
15.
R. D. Van Buskirk and P. S. Marcus, “Vortex Dynamics in Flows with Non-Uniform Shear. Part I,” submitted to J. Fluid Mech. (1991).
16.
P. G.
Saffman
and
R.
Szeto
Equilibrium shapes of a pair of equal uniform vortices
,”
Phys. Fluids
23
,
2239
2242
(
1980
).
17.
R. D. Van Buskirk, “Quasi-geostrophic Vortices in Zonal Shear,” Ph.D. thesis, Harvard University, 1991.
18.
R. D. Van Buskirk and P. S. Marcus, “Spectrally Accurate Contour Dynamics” to appear in J. Comput. Phys. (1994).
19.
D. W. Moore and P. G. Saffman, “The Structure of a Line Vortex in an Imposed Strain” in Aircraft Wake Turbulence and its Detection, edited by J. Olsen, A. Goldberg, and N. Rogers (Plenum, New York, 1971), p. 339.
20.
P. S. Marcus and R. D. Van Buskirk, “Vortex Dynamics in Flows with Non-uniform Shear. Part II: Finite Deformation Radius,” submitted to J. Fluid Mech. (1994).
21.
B. A.
Smith
,
L. A.
Soderblom
,
R.
Beebe
,
J.
Boyce
,
G.
Briggs
,
M.
Carr
,
S. A.
Collins
,
A. F.
Cook
II
,
G. E.
Danielson
,
M. E.
Davis
,
G. E.
Hunt
,
A.
Ingersoll
,
T. V.
Johnson
,
H.
Masursky
,
J.
McCauley
,
D.
Morrison
,
T.
Owen
,
C.
Sagan
,
E. M.
Shoemaker
,
R.
Strom
,
V. E.
Suomi
, and
J.
Veverka
, “
The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results
Science
206
,
927
950
(
1979
).
22.
M. V.
Nezlin
, “
Shallow Water Modeling of Solitary Vortices of the Jovian Great Red Spot Type (Rossby Soliton and Cyclonic-Anticyclonic Asymmetry in Laboratory)
,”
Chaos
4
,
187
202
(
1994
).
23.
B. A.
Smith
,
L.
Soderblom
,
R.
Batson
,
P.
Bridges
,
J.
Inge
,
H.
Masursky
,
E.
Shoemaker
,
R.
Beebe
,
J.
Boyce
,
G.
Briggs
,
A.
Bunker
,
S. A.
Collins
,
C. J.
Hansen
,
T. V.
Johnson
,
J. L.
Mitchell
,
R. J.
Terrile
,
A. F.
Cook
II
,
J.
Cuzzi
,
J. B.
Pollack
,
G. E.
Danielson
,
A. P.
Ingersoll
,
M. E.
Davies
,
G. E.
Hunt
,
D.
Morrison
,
T.
Owen
,
C.
Sagan
,
J.
Veverka
,
R.
Strom
, and
V. E.
Suomi
, “
Voyager 2 Encounter with the Saturnian System
,”
Science
215
,
499
536
(
1982
).
24.
F. M.
Flaser
,
B. J.
Conrath
,
J. A.
Pirraglia
,
P. C.
Clark
,
R. G.
French
, and
P. J.
Gierasch
, “
Thermal Structure and Dynamics of the Jovian Atmosphere I. The Great Red Spot
,”
J. Geophys. Res.
86
,
8759
8767
(
1981
).
25.
C. Graves, “Simulated Cloud Morphologies of Jovian Cyclones and Anti-Cyclones,” University of California at Berkeley Masters Thesis Project, 1993.
26.
M.-M.
Mac Low
and
A. P.
Ingersoll
, “
Merging of Vortices in the Atmosphere of Jupiter: An Analysis of Voyager Images
,”
Icarus
65
,
353
369
(
1986
).
27.
B.
Legras
and
D. G.
Dritschel
, “
Vortex stripping and the generation of high vorticity gradients in two-dimensional flows
,”
Appl. Sci. Res.
51
,
445
455
(
1993
).
28.
P. B.
Rhines
and
W. R.
Young
Homogenization of Potential Vorticity in Planetary Gyres
,”
J. Fluid Mech.
122
,
347
367
(
1982
).
29.
J.
Sommeria
,
S. D.
Meyers
, and
H. L.
Swinney
, “
Laboratory Simulation of Jupiter’s Great Red Spot
,”
Nature
331
,
689
693
(
1988
).
30.
T. E.
Dowling
, “
A Relationship Between Potential Vorticity and Zonal Winds on Jupiter
,”
J. Atmos. Sci.
50
,
14
22
(
1993
).
31.
T. E.
Dowling
and
A. P.
Ingersoll
, “
Jupiter’s Red Spot as a Shallow-Water System
,”
J. Atmos. Sci.
46
,
3256
3278
(
1989
).
32.
D.
Liepmann
and
M.
Gharib
, “
The Role of Streamwise Vorticity in the Near-Field Entrainment of Round Jets
,”
J. Fluid Mech.
245
,
643
668
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.