It is demonstrated that cyclones evolve in a way different from that of anticyclones in rotating shallow water. The anticyclones merge and eventually take circular coherent forms, but cyclones are elongated with active enstrophy cascading. This asymmetric evolution is strengthened with increasing surface displacements. When the initial surface displacement exceeds a certain critical value, the initial elongation of a cyclonic ellipse ends up with splitting in two cyclones. This splitting of the cyclonic ellipse is always associated with the first appearance of a saddle point inside the core, due to irrotational, ageostrophic motion. The appearance of the saddle point inside the core seems to be a necessary condition for splitting of the core of the cyclonic ellipse with surface displacements. The linear stability analysis of the elliptical vortex is consistent qualitatively with both of the simulation results and the kinematic axisymmetrization/elongation principle.

1.
J. G.
Charney
,
J. Atmos. Sci.
28
,
1087
(
1971
).
2.
G. K. Batchelor, Theory of Homogeneous Turbulence (Cambridge U.P., Cambridge, 1953).
3.
R. H.
Kraichnan
,
Phys. Fluids
10
,
1417
(
1967
).
4.
J. C.
McWilliams
,
J. Fluid Mech.
146
,
21
(
1984
).
5.
J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987).
6.
P. B.
Rhines
,
Annu. Rev. Fluid Mech.
11
,
401
(
1979
).
7.
L. M.
Polvani
,
N. J.
Zabusky
, and
G. R.
Flierl
,
J. Fluid Mech.
205
,
215
(
1989
).
8.
V. D.
Larichev
and
J. C.
McWilliams
,
Phys. Fluids A
3
,
938
(
1991
).
9.
A. R. Robinson, in Eddies in Marine Science, edited by A. R. Robinson (Springer-Verlag, New York, 1983).
10.
M. V.
Nezlin
,
A. Yu.
Rylov
,
A. S.
Trubnikov
, and
A. V.
Khutoretskii
,
Geophys. Astrophys. Fluid Dyn.
52
,
211
(
1990
).
11.
J. G. Charney and G. R. Flierl, in Evolution of Physical Oceanography, edited by B. A. Warren and C. Wunsch (MIT Press, Cambridge, MA, 1981).
12.
T.
Yamagata
,
J. Oceanogr. Soc. Jpn.
38
,
236
(
1982
).
13.
G. P.
Williams
and
T.
Yamagata
,
J. Atmos. Sci.
41
,
453
(
1984
).
14.
B.
Cushman-Roisin
and
B.
Tang
,
J. Phys. Oceanogr.
20
,
97
(
1990
).
15.
M.
Farge
and
R.
Sadourny
,
J. Fluid Mech.
206
,
433
(
1989
).
16.
M. V.
Melander
,
J. C.
McWilliams
, and
N. J.
Zabusky
,
J. Fluid Mech.
178
,
137
(
1987
).
17.
A. E. H.
Love
,
Proc. London Math. Soc.
35
,
18
(
1893
).
18.
D. G.
Dritschel
,
J. Fluid Mech.
172
,
157
(
1986
).
19.
L. M.
Polvani
,
G. R.
Flierl
, and
N. J.
Zabusky
,
Phys. Fluids A
1
,
181
(
1989
).
20.
B.
Cushman-Roisin
,
W. H.
Heil
, and
D.
Nof
,
J. Geophys. Res.
90
,
11756
(
1985
).
21.
P. R.
Gent
and
J. C.
McWilliams
,
Dyn. Atmos. Oceans
7
,
67
(
1983
).
22.
N. J.
Norton
,
J. C.
McWilliams
, and
P. R.
Gent
,
J. Comput. Phys.
67
,
439
(
1986
).
23.
A. E.
Perry
and
M. S.
Chong
,
Annu. Rev. Fluid Mech.
19
,
125
(
1987
).
24.
J.
Weiss
,
Physica D
48
,
273
(
1991
).
25.
G. R.
Flierl
,
J. Fluid Mech.
197
,
349
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.