Exoplanets known as hot Jupiters offer a unique testbed for the study of the magnetohydrodynamical thermoresistive instability. This instability arises when ohmic heating enhances the electrical conductivity in a positive feedback loop leading to a thermal runaway. The heat equation, coupled with the momentum and magnetic induction equations form a strongly coupled non-linear third order system, from which chaotic behavior emerges naturally. We first illustrate and discuss the dynamical impact of thermoresistive instability in a representative solution in which the instability recurs in the form of periodic bursts. We then focus on the physical parameter regime in which aperiodic behavior occurs and demonstrate its chaotic nature. The chaotic regime turns out to be restricted to a relatively narrow region of parameter space within the domain where the thermoresistive instability occurs, on either side of which different classes of non-chaotic periodic behavior are observed. Through a linear stability analysis, we showcase how chaos appears at the transition between these dynamically distinct oscillatory regimes, which may be understood as overdamped and damped nonlinear oscillations.

1.
A. P.
Showman
and
L. M.
Polvani
,
Astrophys. J.
738
,
71
(
2011
).
2.
T. D.
Komacek
and
A. P.
Showman
,
Astrophys. J.
821
,
16
(
2016
).
3.
P. L.
Read
and
S.
Lebonnois
,
Annu. Rev. Earth Planet. Sci.
46
,
175
(
2018
).
4.
T.
Imamura
,
J.
Mitchell
,
S.
Lebonnois
,
Y.
Kaspi
,
A. P.
Showman
, and
O.
Korablev
,
Space Sci. Rev.
216
,
87
(
2020
).
5.
I. A. G.
Snellen
,
R. J.
de Kok
,
E. J. W.
de Mooij
, and
S.
Albrecht
,
Nature
465
,
1049
(
2010
).
6.
K.
Heng
,
K.
Menou
, and
P. J.
Phillipps
,
Mon. Not. RAS
413
,
2380
(
2011
).
7.
T.
Louden
and
P. J.
Wheatley
,
Astrophys. J. Lett.
814
,
L24
(
2015
).
8.
M.
Brogi
,
R. J.
de Kok
,
S.
Albrecht
,
I. A. G.
Snellen
,
J. L.
Birkby
, and
H.
Schwarz
,
Astrophys. J.
817
,
106
(
2016
).
9.
T. D.
Komacek
,
A. P.
Showman
, and
X.
Tan
,
Astrophys. J.
835
,
198
(
2017
).
10.
J. V.
Seidel
,
D.
Ehrenreich
,
R.
Allart
,
H. J.
Hoeijmakers
,
C.
Lovis
,
V.
Bourrier
,
L.
Pino
,
A.
Wyttenbach
,
V.
Adibekyan
,
Y.
Alibert
,
F.
Borsa
,
N.
Casasayas-Barris
,
S.
Cristiani
,
O. D. S.
Demangeon
,
P.
Di Marcantonio
,
P.
Figueira
,
J. I.
González Hernández
,
J.
Lillo-Box
,
C. J. A. P.
Martins
,
A.
Mehner
,
P.
Molaro
,
N. J.
Nunes
,
E.
Palle
,
F.
Pepe
,
N. C.
Santos
,
S. G.
Sousa
,
A.
Sozzetti
,
H. M.
Tabernero
, and
M. R.
Zapatero Osorio
,
Astron. Astrophys.
653
,
A73
(
2021
).
11.
A. P.
Showman
and
T.
Guillot
,
Astron. Astrophys.
385
,
166
(
2002
).
12.
C. S.
Cooper
and
A. P.
Showman
,
Astrophys. J. Lett.
629
,
L45
(
2005
).
13.
A. P.
Showman
,
J. J.
Fortney
,
Y.
Lian
,
M. S.
Marley
,
R. S.
Freedman
,
H. A.
Knutson
, and
D.
Charbonneau
,
Astrophys. J.
699
,
564
(
2009
).
14.
E.
Rauscher
and
K.
Menou
,
Astrophys. J.
714
,
1334
(
2010
).
15.
T.
Kataria
,
D. K.
Sing
,
N. K.
Lewis
,
C.
Visscher
,
A. P.
Showman
,
J. J.
Fortney
, and
M. S.
Marley
,
Astrophys. J.
821
,
9
(
2016
).
16.
D. J.
Armstrong
,
E.
de Mooij
,
J.
Barstow
,
H. P.
Osborn
,
J.
Blake
, and
N. F.
Saniee
,
Nat. Astron.
1
,
0004
(
2017
).
17.
18.
L.
Dang
,
N. B.
Cowan
,
J. C.
Schwartz
,
E.
Rauscher
,
M.
Zhang
,
H. A.
Knutson
,
M.
Line
,
I.
Dobbs-Dixon
,
D.
Deming
,
S.
Sundararajan
,
J. J.
Fortney
, and
M.
Zhao
,
Nat. Astron.
2
,
220
(
2018
).
19.
T. J.
Bell
,
M.
Zhang
,
P. E.
Cubillos
,
L.
Dang
,
L.
Fossati
,
K. O.
Todorov
,
N. B.
Cowan
,
D.
Deming
,
R. T.
Zellem
,
K. B.
Stevenson
,
I. J. M.
Crossfield
,
I.
Dobbs-Dixon
,
J. J.
Fortney
,
H. A.
Knutson
, and
M. R.
Line
,
Mon. Not. RAS
489
,
1995
(
2019
).
20.
B.
Jackson
,
E.
Adams
,
W.
Sandidge
,
S.
Kreyche
, and
J.
Briggs
,
Astron. J.
157
,
239
(
2019
).
21.
C.
von Essen
,
M.
Mallonn
,
C. C.
Borre
,
V.
Antoci
,
K. G.
Stassun
,
S.
Khalafinejad
, and
G.
Tautvaišienė
,
Astron. Astrophys.
639
,
A34
(
2020
).
22.
T. M.
Rogers
and
T. D.
Komacek
,
Astrophys. J.
794
,
132
(
2014
).
23.
A. W.
Hindle
,
P. J.
Bushby
, and
T. M.
Rogers
,
Astrophys. J. Lett.
872
,
L27
(
2019
).
24.
A. W.
Hindle
,
P. J.
Bushby
, and
T. M.
Rogers
,
Astrophys. J. Lett.
916
,
L8
(
2021
).
25.
A. W.
Hindle
,
P. J.
Bushby
, and
T. M.
Rogers
,
Astrophys. J.
922
,
176
(
2021
).
26.
L.
Welbanks
,
N.
Madhusudhan
,
N. F.
Allard
,
I.
Hubeny
,
F.
Spiegelman
, and
T.
Leininger
,
Astrophys. J. Lett.
887
,
L20
(
2019
).
27.
R.
Perna
,
K.
Menou
, and
E.
Rauscher
,
Astrophys. J.
719
,
1421
(
2010
).
28.
K.
Batygin
and
D. J.
Stevenson
,
Astrophys. J. Lett.
714
,
L238
(
2010
).
29.
R.
Hardy
,
A.
Cumming
, and
P.
Charbonneau
,
Astrophys. J.
940
,
123
(
2022
).
30.
R.
Hardy
,
P.
Charbonneau
, and
A.
Cumming
,
Astrophys. J.
959
,
41
(
2023
).
31.
R.
Hardy
,
P.
Charbonneau
, and
A.
Cumming
,
Astrophys. J.
978
,
149
(
2025
).
32.
C.
Soriano-Guerrero
,
D.
Viganò
,
R.
Perna
,
T.
Akgün
, and
C.
Palenzuela
,
Mon. Not. RAS
525
,
626
(
2023
).
34.
35.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol.
117
,
500
(
1952
).
36.
J.
Guckenheimer
and
R. A.
Oliva
,
SIAM J. Appl. Dyn. Syst.
1
,
105
(
2002
).
37.
O.
Regev
and
M.
Livio
,
Astron. Astrophys.
134
,
123
(
1984
).
38.
M.
Livio
and
O.
Regev
,
Astron. Astrophys.
148
,
133
(
1985
).
39.
A.
Bayliss
and
B. J.
Matkowsky
,
J. Comput. Phys.
71
,
147
(
1987
).
40.
A.
Bayliss
and
B. J.
Matkowsky
,
SIAM J. Appl. Math.
50
,
437
(
1990
).
41.
P. A.
Davidson
,
An Introduction to Magnetohydrodynamics
(
Cambridge University Press
,
2001
).
42.
J. P. H.
Goedbloed
and
S.
Poedts
,
Principles of Magnetohydrodynamics
(
Cambridge University Press
,
2004
).
43.
P. C.
Matthews
,
M. R. E.
Proctor
,
A. M.
Rucklidge
, and
N. O.
Weiss
,
Phys. Lett. A
183
,
69
(
1993
).
44.
D.
Goluskin
,
H.
Johnston
,
G. R.
Flierl
, and
E. A.
Spiegel
,
J. Fluid Mech.
759
,
360
(
2014
).
46.
S.
Zambrano
,
I. P.
Mariño
, and
M. A. F.
Sanjuán
,
New J. Phys.
11
,
023025
(
2009
).
47.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
, 2nd ed. (CRC Press, 2015).
48.
L.
Shilnikov
,
New J. Phys.
6
,
163
166
(
1965
).
49.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, 2nd ed. (
Springer
,
1983
).
50.
P.
Glendinning
and
C.
Sparrow
,
J. Stat. Phys.
35
,
645
(
1984
).
51.
D. W.
Moore
and
E. A.
Spiegel
,
Astrophys. J.
143
,
871
(
1966
).
52.
J.
Keener
and
J.
Sneyd
, “Nonlinear wave propagation,” in
Mathematical Physiology
(Springer, New York, NY, 1998), pp. 268–298.
53.
54.
W.
Gerstner
and
W. M.
Kistler
,
Spiking Neuron Models: Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
2002
).
55.
K.
Aihara
,
G.
Matsumoto
, and
Y.
Ikegaya
,
J. Theor. Biol.
109
,
249
(
1984
).
56.
D. D.
Clayton
,
Principles of Stellar Evolution and Nucleosynthesis
(
University of Chicago Press
,
1983
).
57.
C. J.
Marzec
and
E. A.
Spiegel
,
SIAM J. Appl. Math.
38
,
403
(
1980
).
58.
We solve the set of nonlinear coupled ordinary differential equations (5)–(8) as an initial value problem, using a solver from the Python package SciPy. The solver is the solve_ivp function from the integrate module. Further information can be found at https://docs.scipy.org/doc/scipy/reference/generated/ scipy.integrate.solve_ivp.html.
59.
Although we focus in this paper on the simple local model of Hardy et al.,29 a similar chaotic behavior also materializes in a spatially extended version where variations of temperature in longitude are expressed as a first order Fourier expansion.
You do not currently have access to this content.