Despite the plethora of classical chaotic maps that have been proposed, the endeavor to discover novel chaotic maps exhibiting various forms of nonlinearity remains a formidable challenge. Inspired by the esthetic allure of mathematical curves, such as the cardioid and rose curves, a series of chaotic maps have been proposed. The results demonstrate that the resultant phase diagrams reflect the contours of these sophisticated curves. The presence of chaos is substantiated through the estimation of Lyapunov exponents and the application of the 0–1 test algorithm. Upon incorporating the discrete memristor into chaotic maps in two distinct manners, it is revealed that the resultant memristive chaotic maps exhibit heightened complexity. Given that the discrete memristor augments the dimensionality of the chaotic maps, hyperchaos phenomena are observed. Finally, analog circuits of two chaotic maps, namely, a cardioid chaotic map and its counterpart with a discrete memristor, are designed to show the physical realizability. This approach offers an alternative method for the design of chaotic maps and underscores the efficacy of discrete memristors in the enhancement of chaotic behaviors.

1.
J. P.
Crutchfield
, “
Between order and chaos
,”
Nat. Phys.
8
,
17
24
(
2012
).
2.
B.
Zlatanovska
and
D.
Dimovski
, “
Recurrent solutions of the Lorenz system of differential equations
,”
Asian-Eur. J. Math.
15
,
2250241
(
2022
).
3.
J.
,
G.
Chen
,
D.
Cheng
, and
S.
Celikovsky
, “
Bridge the gap between the Lorenz system and the Chen system
,”
Int. J. Bifurc. Chaos
12
,
2917
2926
(
2002
).
4.
R.
Arun
,
M.
Sathish Aravindh
,
A.
Venkatesan
, and
M.
Lakshmanan
, “
Reservoir computing with logistic map
,”
Phys. Rev. E
110
,
034204
(
2024
).
5.
J. X.
de Hénon
, “
Hénon maps: A list of open problems
,”
Arnold Math. J.
10
,
585
620
(
2024
).
6.
A.
Belazi
and
A. A.
Abd El-Latif
, “
A simple yet efficient S-box method based on chaotic sine map
,”
Optik
130
,
1438
1444
(
2017
).
7.
X.
Liu
,
C.
Li
,
S. S.
Ge
, and
D.
Li
, “
Time-synchronized control of chaotic systems in secure communication
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
69
,
3748
3761
(
2022
).
8.
S.
Guo
,
Y.
Fu
, and
L.
Yu
, “
An encrypted multitone modulation method for physical layer security based on chaotic cryptography
,”
Phys. Commun.
47
,
101389
(
2021
).
9.
X.
Li
,
J.
Wang
,
W.
Hao
et al., “
Chaotic arithmetic optimization algorithm
,”
Appl. Intell.
52
,
16718
16757
(
2022
).
10.
X.
Liu
,
X.
Tong
,
M.
Zhang
et al., “
Image compression and encryption algorithm based on uniform non-degeneracy chaotic system and fractal coding
,”
Nonlinear Dyn.
111
,
8771
8798
(
2023
).
11.
S.
Shahi
,
F. H.
Fenton
, and
E. M.
Cherry
, “
Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study
,”
Mach. Learn. Appl.
8
,
100300
(
2022
).
12.
Y.
Yang
and
H.
Li
, “
Neural ordinary differential equations for robust parameter estimation in dynamic systems with physical priors
,”
Appl. Soft Comput.
169
,
112649
(
2025
).
13.
Z.
Wang
,
G.
He
,
Y.
Wang
et al., “
Wave propagation in finite discrete chains unravelled by virtual measurement of dispersion properties
,”
IET Sci. Meas. Technol.
18
,
280
288
(
2024
).
14.
Z.
Hua
,
Y.
Zhang
,
H.
Bao
et al., “
N-dimensional polynomial chaotic system with applications
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
69
,
784
797
(
2021
).
15.
X.
Liu
,
X.
Tong
,
M.
Zhang
, and
Z.
Wang
, “
Constructing of n-dimensional non-degenerate chaotic maps and its application for robust image encryption
,”
Appl. Math. Model.
130
,
16
42
(
2024
).
16.
X.
Wang
and
J.
Yang
, “
A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient
,”
Inf. Sci.
569
,
217
240
(
2021
).
17.
M.
Wang
,
X.
Wang
,
T.
Zhao
et al., “
Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme
,”
Inf. Sci.
544
,
1
24
(
2021
).
18.
W.
Zhu
,
K.
Sun
,
S.
He
et al., “
A class of m-dimension grid multi-cavity hyperchaotic maps and its application
,”
Chaos, Solitons Fractals
170
,
113370
(
2023
).
19.
T.
Liu
,
S.
Banerjee
,
H.
Yan
, and
J.
Mou
, “
Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation
,”
Eur. Phys. J. Plus
136
,
506
(
2021
).
20.
L.
Luo
and
J. G.
Flanagan
, “
Development of continuous and discrete neural maps
,”
Neuron
56
,
284
300
(
2007
).
21.
L.
Chen
,
H.
Yin
,
T.
Huang
et al., “
Chaos in fractional-order discrete neural networks with application to image encryption
,”
Neural Netw.
125
,
174
184
(
2020
).
22.
M. Z.
Talhaoui
and
X.
Wang
, “
A new fractional one dimensional chaotic map and its application in high-speed image encryption
,”
Inf. Sci.
550
,
13
26
(
2021
).
23.
Z.
Tang
,
S.
He
,
H.
Wang
et al., “
A novel variable-order fractional chaotic map and its dynamics
,”
Chin. Phys. B
33
,
030503
(
2024
).
24.
T. R.
Shrama
and
P. M.
Gade
, “
Fractional-order neuronal maps: Dynamics, control and stability analysis
,”
Pramana
98
,
53
(
2024
).
25.
C.
Dong
,
K.
Sun
,
S.
He
, and
H.
Wang
, “
A hyperchaotic cycloid map with attractor topology sensitive to system parameters
,”
Chaos
31
,
083132
(
2021
).
26.
S.
He
,
K.
Sun
,
Y.
Peng
, and
L.
Wang
, “
Modeling of discrete fracmemristor and its application
,”
AIP Adv.
10
,
015332
(
2020
).
27.
M.
Ma
,
Y.
Yang
,
Z.
Qiu
et al., “
A locally active discrete memristor model and its application in a hyperchaotic map
,”
Nonlinear Dyn.
107
,
2935
2949
(
2022
).
28.
L.
Ren
,
J.
Mou
,
S.
Banerjee
, and
Y.
Zhang
, “
A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application
,”
Chaos, Solitons Fractals
167
,
113024
(
2023
).
29.
S.
Zhang
,
Y.
Li
,
D.
Lu
et al., “
A universal discrete memristor with application to multi-attractor generation
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
71
,
3764
3774
(
2024
).
30.
B.
Xu
,
X.
She
,
L.
Jiang
et al., “
A 3D discrete memristor hyperchaotic map with application in dual-channel random signal generator
,”
Chaos, Solitons Fractals
173
,
113661
(
2023
).
31.
Q.
Lai
and
L.
Yang
, “
Discrete memristor applied to construct neural networks with homogeneous and heterogeneous coexisting attractors
,”
Chaos, Solitons Fractals
174
,
113807
(
2023
).
32.
M.
Liu
,
S.
Zhang
,
Z.
Fan
, and
M.
Qiu
, “
h state estimation for discrete-time chaotic systems based on a unified model
,”
IEEE Trans. Syst. Man Cybern. B
42
,
1053
1063
(
2012
).
33.
P.
Dudek
and
V.
Juncu
, “
Compact discrete-time chaos generator circuit
,”
Electron. Lett.
39
,
1431
(
2003
).
34.
I. A.
Diaz-Diaz
and
E.
Campos
, “Analog implementation of 1-D discrete map,” in 2024 IEEE International Conference on Industrial Technology (ICIT) (IEEE, 2024), pp. 1–4.
35.
L.
Fu
,
X.
Wu
,
S.
He
,
H.
Wang
, and
K.
Sun
, “
A memristive Hénon map based on the state variable difference and its analog circuit implementation
,”
IEEE Trans. Ind. Electron.
71
,
9668
9676
(
2024
).
36.
Y.
Wang
,
R.
Xiao
,
N.
Xiao
et al., “
Wireless multiferroic memristor with coupled giant impedance and artificial synapse application
,”
Adv. Electron. Mater.
8
,
2200370
(
2022
).
37.
Z.
Wang
,
Y.
Yang
,
F.
Parastesh
et al., “
Chaotic dynamics of a carbon nanotube oscillator with symmetry-breaking
,”
Phys. Scr.
100
,
015225
(
2025
).
38.
M.
Sandri
, “
Numerical calculation of Lyapunov exponents
,”
Math. J.
6
,
78
84
(
1996
).
39.
D.
Bernardini
and
G.
Litak
, “
An overview of 0–1 test for chaos
,”
J. Braz. Soc. Mech. Sci. Eng.
38
,
1433
1450
(
2016
).
40.
S.
He
,
D.
Zhan
,
H.
Wang
,
K.
Sun
, and
Y.
Peng
, “
Discrete memristor and discrete memristive systems
,”
Entropy
24
,
786
(
2022
).
You do not currently have access to this content.