In recent years, multifractal analysis of complex networks primarily focuses on the topological scale, where the distances between nodes are characterized through their topological shortest-path lengths. In this study, we integrate geometric information into the multifractal analysis framework of networks, enabling the distances between nodes to be expressed through geometric information. We utilize these geometric information to assign weights to each edge of the original network, thereby reconstructing the network in a way that simultaneously captures both topological and geometric information. We analyze changes in the multifractal spectrum of these reconstructed networks using the sandbox algorithm for multifractal analysis of weighted networks. This approach not only enriches our understanding of the network structures but also provides new insights into the intrinsic mechanisms of complex systems, specifically revealing that the synergistic interplay between network topology and geometric weight assignments critically regulates the emergence of multiscale complexity. By combining topological and geometric information, we can more comprehensively reveal the multifractal structure and heterogeneity of networks, particularly the relationships between hub nodes and non-hub nodes and their impact on the overall network characteristics. We conduct experimental analyses on both model networks, computational mesh networks and real-world networks, and find that the introduction of geometric information has varying degrees of influence on their generalized fractal dimensions.

1.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2008
).
2.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
3.
P.
Ji
,
J.
Ye
,
Y.
Mu
,
W.
Lin
,
Y.
Tian
,
C.
Hens
,
M.
Perc
,
Y.
Tang
,
J.
Sun
, and
J.
Kurths
, “
Signal propagation in complex networks
,”
Phys. Rep.
1017
,
1
96
(
2023
).
4.
F.
Nian
,
Y.
Yang
, and
Y.
Shi
, “
Fractal propagation and immunity on network
,”
Fractals
29
,
2150134
(
2021
).
5.
L.
Luo
,
F.
Nian
,
Y.
Cui
, and
F.
Li
, “
Fractal information dissemination and clustering evolution on social hypernetwork
,”
Chaos
34
,
093128
(
2024
).
6.
Z.
Zhang
,
S.
Zhou
,
T.
Zou
, and
G.
Chen
, “
Fractal scale-free networks resistant to disease spread
,”
J. Stat. Mech.: Theory Exp.
2008
,
P09008
.
7.
W. A.
Mutch
and
G.
Lefevre
, “
Health, small-worlds, fractals and complex networks: An emerging field
,”
Med. Sci. Monit.
9
,
MT55
MT59
(
2003
).
8.
P.
Pavón-Domínguez
,
A. B.
Ariza-Villaverde
,
A.
Rincón-Casado
,
E. G.
de Ravé
, and
F. J.
Jiménez-Hornero
, “
Fractal and multifractal characterization of the scaling geometry of an urban bus-transport network
,”
Comput. Environ. Urban Syst.
64
,
229
238
(
2017
).
9.
W.
Wen
,
W.
Zhang
, and
H.
Deng
, “
Research on urban road network evaluation based on fractal analysis
,”
J. Adv. Transp.
2023
,
9938001
.
10.
B.
Mandelbrot
, “
How long is the coast of britain? Statistical self-similarity and fractional dimension
,”
Science
156
,
636
638
(
1967
).
11.
C.
Song
,
S.
Havlin
, and
H. A.
Makse
, “
Self-similarity of complex networks
,”
Nature
433
,
392
395
(
2005
).
12.
K.
Frenken
, “
Technological innovation and complexity theory
,”
Econ. Innov. New Technol.
15
,
137
155
(
2006
).
13.
B.
Dubuc
,
J.
Quiniou
,
C.
Roques-Carmes
,
C.
Tricot
, and
S.
Zucker
, “
Evaluating the fractal dimension of profiles
,”
Phys. Rev. A
39
,
1500
(
1989
).
14.
L.
Barreira
,
Y.
Pesin
, and
J.
Schmeling
, “
On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity
,”
Chaos
7
,
27
38
(
1997
).
15.
D.-L.
Wang
,
Z.-G.
Yu
, and
V.
Anh
, “
Multifractal analysis of complex networks
,”
Chin. Phys. B
21
,
080504
(
2012
).
16.
S.
Moreno-Pulido
,
P.
Pavón-Domínguez
, and
P.
Burgos-Pintos
, “
Temporal evolution of multifractality in the Madrid Metro subway network
,”
Chaos, Solitons and Fractals
142
,
110370
(
2021
).
17.
S.
Rendón de la Torre
,
J.
Kalda
,
R.
Kitt
, and
J.
Engelbrecht
, “
Fractal and multifractal analysis of complex networks: Estonian network of payments
,”
Eur. Phys. J. B
90
,
234
(
2017
).
18.
S. N.
Dorogovtsev
and
J. F.
Mendes
, “
Evolution of networks
,”
Adv. Phys.
51
,
1079
1187
(
2002
).
19.
S.
Furuya
and
K.
Yakubo
, “
Multifractality of complex networks
,”
Phys. Rev. E
84
,
036118
(
2011
).
20.
B.-G.
Li
,
Z.-G.
Yu
, and
Y.
Zhou
, “
Fractal and multifractal properties of a family of fractal networks
,”
J. Stat. Mech.: Theory Exp.
2014
,
P02020
.
21.
J.-L.
Liu
,
Z.-G.
Yu
, and
V.
Anh
, “
Determination of multifractal dimensions of complex networks by means of the sandbox algorithm
,”
Chaos
25
,
023103
(
2015
).
22.
P.
Pavón-Domínguez
and
S.
Moreno-Pulido
, “
A fixed-mass multifractal approach for unweighted complex networks
,”
Phys. A
541
,
123670
(
2020
).
23.
P.
Pavón-Domínguez
and
S.
Moreno-Pulido
, “
Sandbox fixed-mass algorithm for multifractal unweighted complex networks
,”
Chaos, Solitons and Fractals
156
,
111836
(
2022
).
24.
S.
Jalan
,
A.
Yadav
,
C.
Sarkar
, and
S.
Boccaletti
, “
Unveiling the multi-fractal structure of complex networks
,”
Chaos, Solitons and Fractals
97
,
11
14
(
2017
).
25.
F.-X.
Zhao
,
J.-L.
Liu
, and
Y.
Zhou
, “
Sandbox edge-based algorithm for multifractal analysis of complex networks
,”
Chaos, Solitons and Fractals
173
,
113719
(
2023
).
26.
Y.-Q.
Song
,
J.-L.
Liu
,
Z.-G.
Yu
, and
B.-G.
Li
, “
Multifractal analysis of weighted networks by a modified sandbox algorithm
,”
Sci. Rep.
5
,
17628
(
2015
).
27.
Y.
Xue
and
P.
Bogdan
, “
Reliable multi-fractal characterization of weighted complex networks: Algorithms and implications
,”
Sci. Rep.
7
,
7487
(
2017
).
28.
D. S.
Bassett
and
E.
Bullmore
, “
Small-world brain networks
,”
The Neuroscientist
12
,
512
523
(
2006
).
29.
C. I.
Sampaio Filho
,
A. A.
Moreira
,
R. F.
Andrade
,
H. J.
Herrmann
, and
J. S.
Andrade Jr
, “
Mandala networks: Ultra-small-world and highly sparse graphs
,”
Sci. Rep.
5
,
9082
(
2015
).
30.
G.
García-Pérez
,
M.
Boguñá
, and
M. Á.
Serrano
, “
Multiscale unfolding of real networks by geometric renormalization
,”
Nat. Phys.
14
,
583
589
(
2018
).
31.
D.
Li
,
K.
Kosmidis
,
A.
Bunde
, and
S.
Havlin
, “
Dimension of spatially embedded networks
,”
Nat. Phys.
7
,
481
484
(
2011
).
32.
R.
Rak
and
E.
Rak
, “
Multifractality of complex networks is also due to geometry: A geometric sandbox algorithm
,”
Entropy
25
,
1324
(
2023
).
33.
M.
Zheng
,
G.
García-Pérez
,
M.
Boguñá
, and
M. Á.
Serrano
, “
Scaling up real networks by geometric branching growth
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2018994118
(
2021
).
34.
G.
García-Pérez
,
A.
Allard
,
M. Á.
Serrano
, and
M.
Boguñá
, “
Mercator: Uncovering faithful hyperbolic embeddings of complex networks
,”
New J. Phys.
21
,
123033
(
2019
).
35.
D.
Krioukov
,
F.
Papadopoulos
,
M.
Kitsak
,
A.
Vahdat
, and
M.
Boguñá
, “
Hyperbolic geometry of complex networks
,”
Phys. Rev. E
82
,
036106
(
2010
).
36.
J. W.
Cannon
,
W. J.
Floyd
,
R.
Kenyon
,
W. R.
Parry
et al., “
Hyperbolic geometry
,”
Flav. Geom.
31
,
59
115
(
1997
).
37.
M. Á.
Serrano
,
D.
Krioukov
, and
M.
Boguñá
, “
Self-similarity of complex networks and hidden metric spaces
,”
Phys. Rev. Lett.
100
,
078701
(
2008
).
38.
T.
Tél
,
Á.
Fülöp
, and
T.
Vicsek
, “
Determination of fractal dimensions for geometrical multifractals
,”
Phys. A
159
,
155
166
(
1989
).
39.
M.
Kitsak
,
A.
Ganin
,
A.
Elmokashfi
,
H.
Cui
,
D. A.
Eisenberg
,
D. L.
Alderson
,
D.
Korkin
, and
I.
Linkov
, “
Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping
,”
Nat. Commun.
14
,
186
(
2023
).
40.
E.
Ortiz
,
G.
García-Pérez
, and
M. Á.
Serrano
, “
Geometric detection of hierarchical backbones in real networks
,”
Phys. Rev. Res.
2
,
033519
(
2020
).
41.
F.
Papadopoulos
,
M.
Kitsak
,
M. Á.
Serrano
,
M.
Boguñá
, and
D.
Krioukov
, “
Popularity versus similarity in growing networks
,”
Nature
489
,
537
540
(
2012
).
42.
M.
Boguñá
,
I.
Bonamassa
,
M.
De Domenico
,
S.
Havlin
,
D.
Krioukov
, and
M. Á.
Serrano
, “
Network geometry
,”
Nat. Rev. Phys.
3
,
114
135
(
2021
).
43.
H. D.
Rozenfeld
,
S.
Havlin
, and
D.
Ben-Avraham
, “
Fractal and transfractal recursive scale-free nets
,”
New J. Phys.
9
,
175
(
2007
).
44.
L. K.
Gallos
,
C.
Song
,
S.
Havlin
, and
H. A.
Makse
, “
Scaling theory of transport in complex biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
7746
7751
(
2007
).
45.
H. D.
Rozenfeld
and
H. A.
Makse
, “
Fractality and the percolation transition in complex networks
,”
Chem. Eng. Sci.
64
,
4572
4575
(
2009
).
46.
E.
Ravasz
and
A.-L.
Barabási
, “
Hierarchical organization in complex networks
,”
Phys. Rev. E
67
,
026112
(
2003
).
You do not currently have access to this content.