A simple model of wave-particle interaction is studied in its self-consistent form, that is, where the particles are allowed to feedback on the wave dynamics. We focus on the configurations of locked solutions (equilibria) and how the energy-momentum exchange mechanism induces chaos in the model. As we explore the system, we analyze the mathematical structure that gives rise to locked states and how the model’s non-linearity enables multiple equilibrium amplitudes for waves. We also explain the predominance of regularity as we vary the control parameters and the mechanism behind the emergence of chaos under limited parameter choices.

1.
Y.
Elskens
and
D.
Escande
,
Microscopic Dynamics of Plasmas and Chaos
(
IOP Publishing
,
Bristol
,
2003
).
2.
D. F.
Escande
and
Y.
Elskens
, “
Microscopic dynamics of plasmas and chaos: The wave-particle interaction paradigm
,”
Plasma Phys. Control Fusion
45
,
A115
A124
(
2003
).
3.
R.
Balescu
,
Statistical Mechanics of Charged Particles
(
Wiley-Interscience
,
London
,
1963
).
4.
F.
Doveil
,
A.
Macor
, and
K.
Auhmani
, “
Wave-particle interaction investigated in a travelling wave tube
,”
Plasma Phys. Control Fusion
47
,
A261
A271
(
2005
).
5.
M. C.
de Sousa
,
F.
Doveil
,
Y.
Elskens
, and
I. L.
Caldas
, “
Wave-particle interactions in a long traveling wave tube with upgraded helix
,”
Phys. Plasmas
27
(
9
),
093108
(
2020
).
6.
A.
Macor
,
F.
Doveil
, and
Y.
Elskens
, “
Electron climbing a “devil’s staircase” in wave-particle interaction
,”
Phys. Rev. Lett.
95
,
264102
(
2006
).
7.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
New York
,
1993
).
8.
G. R.
Smith
and
N. R.
Pereira
, “
Phase-locked particle motion in a large-amplitude plasma wave
,”
Phys. Fluids
21
,
2253
2262
(
1978
).
9.
N.
Besse
,
Y.
Elskens
,
D. F.
Escande
, and
P.
Bertrand
, “
Validity of quasilinear theory: Refutations and new numerical confirmation
,”
Plasma Phys. Control. Fusion
53
(
025012
),
36
(
2010
).
10.
T. M.
O’Neil
,
J. H.
Winfrey
, and
J. H.
Malmberg
, “
Nonlinear interaction of a small cold beam and a plasma
,”
Phys. Fluids
14
(
6
),
1204
1212
(
1971
).
11.
I. N.
Onishchenko
,
A. R.
Linetskii
,
N. G.
Matsiborko
,
V. D.
Shapiro
, and
V. I.
Shevchenko
, “
Contribution to the nonlinear theory of excitation of a monochromatic plasma wave by an electron beam
,”
JETP Lett.
12
(
8
),
281
285
(
1970
).
12.
H. E.
Mynick
and
A. K.
Kaufman
, “
Soluble theory of nonlinear beam-plasma interaction
,”
Phys. Fluids
21
,
653
663
(
1978
).
13.
J. V.
Gomes
,
M. C.
de Sousa
,
R. L.
Viana
,
I. L.
Caldas
, and
Y.
Elskens
, “
Low-dimensional chaos in the single wave model for self-consistent wave-particle Hamiltonian
,”
Chaos
31
,
083104
(
2021
).
14.
J. C.
Adam
,
G.
Laval
, and
I.
Mendonça
, “
Time-dependent nonlinear Langmuir waves
,”
Phys. Fluids
24
,
260
267
(
1981
).
15.
D.
del Castillo-Negrete
, “Dynamics and self-consistent chaos in a mean field Hamiltonian model,” in Dynamics and Thermodynamics of Systems with Long-Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens (Springer, Berlin, 2002), pp. 407–436.
16.
B. V.
Chirikov
, “
A universal instability of many-dimensional oscillator systems
,”
Phys. Rep.
52
(
5
),
263
379
(
1979
).
17.
D. F.
Escande
, “
Stochasticity in classical Hamiltonian systems: Universal aspects
,”
Phys. Rep.
121
(
3–4
),
165
261
(
1985
).
18.
C.
Skokos
,
T.
Bountis
,
C. G.
Antonopoulos
, and
M. N.
Vrahatis
, “
Detecting order and chaos in Hamiltonian systems by the SALI method
,”
J. Phys. A: Math. Gen.
37
,
6269
6284
(
2004
).
19.
G. A.
Gottwald
,
C. H.
Skokos
, and
J.
Laskar
,
Chaos Detection and Predictability
(
Springer-Verlag
,
Berlin
,
2015
).
20.
Y.
Elskens
and
D. F.
Escande
, “
Slowly pulsating separatrices sweep homoclinic tangles where islands must be small—An extension of classical adiabatic theory
,”
Nonlinearity
4
,
615
667
(
1991
).
21.
A. I.
Neishtadt
,
V. V.
Sidorenko
, and
D. V.
Treschev
, “
Stable periodic motions in the problem on passage through a separatrix
,”
Chaos
7
(
2
),
1
11
(
1997
).
22.
A. I.
Neishtadt
,
C.
Simó
,
D.
Treschev
, and
A.
Vasiliev
, “
Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems
,”
Discrete Contin. Dyn. Syst. Ser. B
10
(
2/3
),
621
650
(
2008
).
You do not currently have access to this content.