In adaptive dynamical networks, the dynamics of the nodes and the edges influence each other. We show that we can treat such systems as a closed feedback loop between edge and node dynamics. Using recent advances on the stability of feedback systems from control theory, we derive local, sufficient conditions for steady states of such systems to be linearly stable. These conditions are local in the sense that they are written entirely in terms of the (linearized) behavior of the edges and nodes. We apply these conditions to the Kuramoto model with inertia written in an adaptive form and the adaptive Kuramoto model. For the former, we recover a classic result, and for the latter, we show that our sufficient conditions match necessary conditions where the latter are available, thus completely settling the question of linear stability in this setting. The method we introduce can be readily applied to a vast class of systems. It enables straightforward evaluation of stability in highly heterogeneous systems.

1.
T.
Gross
and
B.
Blasius
, “
Adaptive coevolutionary networks: A review
,”
J. R. Soc. Interface
5
,
259
271
(
2008
).
2.
T.
Gross
,
C. J.
Dommar D’Lima
, and
B.
Blasius
, “
Epidemic dynamics on an adaptive network
,”
Phys. Rev. Lett.
96
,
208701
(
2006
).
3.
V.
Marceau
,
P.-A.
Noël
,
L.
Hébert-Dufresne
,
A.
Allard
, and
L. J.
Dubé
, “
Adaptive networks: Coevolution of disease and topology
,”
Phys. Rev. E
82
,
036116
(
2010
).
4.
S. V.
Scarpino
,
A.
Allard
, and
L.
Hébert-Dufresne
, “
The effect of a prudent adaptive behaviour on disease transmission
,”
Nat. Phys.
12
,
1042
1046
(
2016
).
5.
B.
Kozma
and
A.
Barrat
, “
Consensus formation on adaptive networks
,”
Phys. Rev. E
77
,
016102
(
2008
).
6.
H.
Rainer
and
U.
Krause
, “
Opinion dynamics and bounded confidence: Models, analysis and simulation
,”
J. Artif. Soc. Soc. Simul.
5
,
1
12
(
2002
).
7.
F.
Vazquez
,
V. M.
Eguíluz
, and
M. S.
Miguel
, “
Generic absorbing transition in coevolution dynamics
,”
Phys. Rev. Lett.
100
,
108702
(
2008
).
8.
I. D.
Couzin
,
C. C.
Ioannou
,
G.
Demirel
,
T.
Gross
,
C. J.
Torney
,
A.
Hartnett
,
L.
Conradt
,
S. A.
Levin
, and
N. E.
Leonard
, “
Uninformed individuals promote democratic consensus in animal groups
,”
Science
334
,
1578
1580
(
2011
).
9.
B.
Skyrms
and
R.
Pemantle
, “A dynamic model of social network formation,” in Adaptive Networks: Theory, Models and Applications (Springer, 2009), pp. 231–251.
10.
A.-L.
Do
,
L.
Rudolf
, and
T.
Gross
, “
Patterns of cooperation: Fairness and coordination in networks of interacting agents
,”
New J. Phys.
12
,
063023
(
2010
).
11.
S.
Bornholdt
and
T.
Rohlf
, “
Topological evolution of dynamical networks: Global criticality from local dynamics
,”
Phys. Rev. Lett.
84
,
6114
(
2000
).
12.
C.
Meisel
and
T.
Gross
, “
Adaptive self-organization in a realistic neural network model
,”
Phys. Rev. E
80
,
061917
(
2009
).
13.
C.
Kuehn
, “
Time-scale and noise optimality in self-organized critical adaptive networks
,”
Phys. Rev. E
85
,
026103
(
2012
).
14.
R. L. G.
Raimundo
,
P. R.
Guimaraes
, and
D. M.
Evans
, “
Adaptive networks for restoration ecology
,”
Trends Ecol. Evol.
33
,
664
675
(
2018
).
15.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1031
,
1
59
(
2023
).
16.
G.
Demirel
,
F.
Vazquez
,
G. A.
Böhme
, and
T.
Gross
, “
Moment-closure approximations for discrete adaptive networks
,”
Phys. D
267
,
68
80
(
2014
).
17.
L. A.
Segel
and
S. A.
Levin
, “
Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions
,”
AIP Conf. Proc.
27
,
123
152
(
1976
). “Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions,” in AIP Conference Proceedings (American Institute of Physics, 1976), Vol. 27, pp. 123–152, see https://www.jasss.org/5/3/2.html
18.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
19.
R.
Berner
,
S.
Vock
,
E.
Schöll
, and
S.
Yanchuk
, “
Desynchronization transitions in adaptive networks
,”
Phys. Rev. Lett.
126
,
028301
(
2021
).
20.
R.
Berner
and
S.
Yanchuk
, “
Synchronization in networks with heterogeneous adaptation rules and applications to distance-dependent synaptic plasticity
,”
Front. Appl. Math. Stat.
7
,
714978
(
2021
).
21.
D.
Wang
,
W.
Chen
,
S. Z.
Khong
, and
L.
Qiu
, “
On the phases of a complex matrix
,”
Linear Algebra Appl.
593
,
152
179
(
2020
).
22.
D.
Wang
,
X.
Mao
,
W.
Chen
, and
L.
Qiu
, “
On the phases of a semi-sectorial matrix and the essential phase of a Laplacian
,”
Linear Algebra Appl.
676
,
441
458
(
2023
).
23.
W.
Chen
,
D.
Wang
,
S. Z.
Khong
, and
L.
Qiu
, “
A phase theory of multi-input multi-output linear time-invariant systems
,”
SIAM J. Control Optim.
62
,
1235
1260
(
2024
).
24.
D.
Zhao
,
W.
Chen
, and
L.
Qiu
, “When small gain meets small phase,” arXiv:2201.06041 (2022).
25.
A. L.
Do
,
S.
Boccaletti
,
J.
Epperlein
,
S.
Siegmund
, and
T.
Gross
, “
Topological stability criteria for networking dynamical systems with Hermitian Jacobian
,”
Eur. J. Appl. Math.
27
,
888
903
(
2016
).
26.
J.
Niehues
,
R.
Delabays
, and
F.
Hellmann
, “Small-signal stability of power systems with voltage droop,” arXiv:2411.10832 (2024).
27.
R.
Kogler
,
A.
Plietzsch
,
P.
Schultz
, and
F.
Hellmann
, “
Normal form for grid-forming power grid actors
,”
PRX Energy
1
,
013008
(
2022
).
28.
A.
Büttner
and
F.
Hellmann
, “
Complex couplings—A universal, adaptive, and bilinear formulation of power grid dynamics
,”
PRX Energy
3
,
013005
(
2024
).
29.
G.
Zames
, “
On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity
,”
IEEE Trans. Autom. Control
11
,
228
238
(
1966
).
30.
Y.
Kuramoto
,
Self-entrainment of a Population of Coupled Non-linear Oscillators
(
Springer
,
1975
), pp.
420
422
.
31.
W. S.
Levine
,
The Control Systems Handbook: Control System Advanced Methods
(
CRC Press
,
2018
).
32.
J.
Bechhoefer
,
Control Theory for Physicists
, 1st ed. (
Cambridge University Press
,
2021
).
33.
The term DC means “direct current” and refers to evaluation at zero frequency.
34.
K.
Zhou
,
Essentials of Robust Control
(
Prentice Hall
,
1998
).
35.
L.
Woolcock
and
R.
Schmid
, “
Mixed gain/phase robustness criterion for structured perturbations with an application to power system stability
,”
IEEE Control Syst. Lett.
7
,
3193
3198
(
2023
).
36.
From here on, we use the same letter for the Laplace transform of a quantity, following convention.
37.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
2012
).
38.
To see this, consider the stacked system of complexified x and the complex conjugate x , which is unitarily equivalent to a real system of stacked x and x.
39.
M.
Thümler
,
S. G.
Srinivas
,
M.
Schröder
, and
M.
Timme
, “
Synchrony for weak coupling in the complexified Kuramoto model
,”
Phys. Rev. Lett.
130
,
187201
(
2023
).
40.
S.
Lee
,
L.
Braun
,
F.
Bönisch
,
M.
Schröder
,
M.
Thümler
, and
M.
Timme
, “
Complexified synchrony
,”
Chaos
34
,
053141
(
2024
).
41.
A.
Bergen
and
D.
Hill
, “
A structure preserving model for power system stability analysis
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
25
35
(
1981
).
42.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
43.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
What adaptive neuronal networks teach us about power grids
,”
Phys. Rev. E
103
,
042315
(
2021
).
You do not currently have access to this content.