Geodesic vortex detection is a tool in nonlinear dynamical systems to objectively identify transient vortices with flow-invariant boundaries that defy the typical deformation found in 2D turbulence. Initially formulated for flows on the Euclidean plane with Cartesian coordinates, we have extended this technique to flows on 2D Riemannian manifolds with arbitrary coordinates. This extension required further formulation of the concept of objectivity on manifolds. Moreover, a recently proposed birth-and-death vortex framing algorithm, based on geodesic detection, has been adapted to address the limited temporal validity of 2D motion in otherwise 3D flows, like those found in the Earth’s stratosphere. With these adaptations, we focused on the Lagrangian, i.e., kinematic, aspects of the austral stratospheric polar vortex during the exceptional sudden warming event of 2002, which resulted in the splitting of the vortex. This study involved applying geodesic vortex detection to isentropic winds from reanalysis data. We provide a detailed analysis of the vortex’s life cycle, covering its birth, splitting process, and eventual death. In addition, we offer new kinematic insights into ozone depletion within the vortex.

1.
G.
Haller
and
F. J.
Beron-Vera
, “
Coherent Lagrangian vortices: The black holes of turbulence
,”
J. Fluid Mech.
731
,
R4
(
2013
).
2.
G.
Haller
and
F. J.
Beron-Vera
, “
Addendum to ‘Coherent Lagrangian vortices: The black holes of turbulence’
,”
J. Fluid Mech.
755
,
R3
(
2014
).
3.
G.
Haller
, “
Climate, black holes and vorticity: How on Earth are they related?
SIAM News
49
,
1
2
(
2016
).
4.
G.
Haller
,
Transport Barriers and Coherent Structures in Flow Data
(
Cambridge University Press
,
Cambridge
,
2023
).
5.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Phys. D
147
,
352
370
(
2000
).
6.
J. M.
Ottino
, “The kinematics of mixing: Stretching, chaos and transport,” in Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 1989).
7.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
M. G.
Brown
, and
H.
Koçak
, “
Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere
,”
J. Atmos. Sci.
69
,
753
767
(
2012
).
8.
G.
Haller
and
F. J.
Beron-Vera
, “
Geodesic theory of transport barriers in two-dimensional flows
,”
Phys. D
241
,
1680
1702
(
2012
).
9.
C. G.
Speziale
, “
A review of material frame-indifference in mechanics
,”
Appl. Mech. Rev.
51
,
489
504
(
1998
).
10.
F.
Andrade-Canto
and
F. J.
Beron-Vera
, “
Do eddies connect the tropical Atlantic Ocean and the Gulf of Mexico?
Geophys. Res. Lett.
49
,
e2022GL099637
, https://doi.org/10.1029/2022GL099637 (
2022
).
11.
F.
Andrade-Canto
,
F. J.
Beron-Vera
,
G. J.
Goni
,
D.
Karrasch
,
M. J.
Olascoaga
, and
J.
Trinanes
, “
Carriers of Sargassum and mechanism for coastal inundation in the Caribbean Sea
,”
Phys. Fluids
34
,
016602
(
2022
).
12.
F.
Andrade-Canto
,
D.
Karrasch
, and
F. J.
Beron-Vera
, “
Genesis, evolution, and apocalyse of loop current rings
,”
Phys. Fluids
32
,
116603
(
2020
).
13.
N.
Bodnariuk
,
M.
Saraceno
,
L. A.
Ruiz-Etcheverry
,
C.
Simionato
,
F.
Andrade-Canto
,
F. J.
Beron-Vera
, and
M. J.
Olascoaga
, “
Multiple Lagrangian jet-core structures in the Malvinas current
,”
J. Geophys. Res.: Oceans
129
,
e2023JC020446
, https://doi.org/10.1029/2023JC020446 (
2024
).
14.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
G.
Haller
,
M.
Farazmand
,
J.
Triñanes
, and
Y.
Wang
, “
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
,”
Chaos
25
,
087412
(
2015
).
15.
Y.
Wang
,
M. J.
Olascoaga
, and
F. J.
Beron-Vera
, “
Coherent water transport across the South Atlantic
,”
Geophys. Res. Lett.
42
,
4072
4079
, https://doi.org/10.1002/2015GL064089 (
2015
).
16.
Y.
Wang
,
M. J.
Olascoaga
, and
F. J.
Beron-Vera
, “
The life cycle of a coherent Lagrangian Agulhas ring
,”
J. Geophys. Res.
121
,
3944
3954
, https://doi.org/10.1002/2015JC011620 (
2016
).
17.
M.
Serra
,
P.
Sathe
,
F. J.
Beron-Vera
, and
G.
Haller
, “
Uncovering the edge of the polar vortex
,”
J. Atoms. Sci.
74
,
3871
3885
(
2017
).
18.
A.
Hadjighasem
and
G.
Haller
, “
Geodesic transport barriers in Jupiter’s atmosphere: A video-based analysis
,”
SIAM Rev.
58
,
69
89
(
2016
).
19.
P.
Haynes
, “
Stratospheric dynamics
,”
Annu. Rev. Fluid Mech.
37
,
263
293
(
2005
).
20.
D. G.
Andrews
,
J. R.
Holton
, and
C. B.
Leovy
, “Middle atmosphere dynamics,” in International Geophysical Series (Academic, 1987), Vol. 40.
21.
D. W.
Waugh
and
L. M.
Polvani
, “Stratospheric polar vortices,” in The Stratosphere: Dynamics, Chemistry and Transport, Geophysics Monographs, edited by L. M Polvani, A. H. Sobel, and D. W. Waugh (American Geophysical Union, Washington DC, 2010), Vol. 190, pp. 43–57.
22.
N. M.
Juckes
and
M. E.
McIntyre
, “
A high-resolution one-layer model of breaking planetary waves in the stratosphere
,”
Nature
328
,
590
596
(
1987
).
23.
S.
Solomon
, “
Stratospheric ozone depletion: A review of concepts and history
,”
Rev. Geophys.
37
,
275
316
, https://doi.org/10.1002/2015JC011620 (
1999
).
24.
J. C.
Farman
,
B. G.
Gardiner
, and
J. D.
Shanklin
, “
Large losses of ozone in Antarctica reveal seasonal ClO x/NO x interaction
,”
Nature
315
,
207
210
(
1985
).
25.
M. J.
Molina
and
F. S.
Rowland
, “
Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone
,”
Nature
249
(
5460
),
810
812
(
1974
).
26.
T.
Matsuno
, “
A dynamical model of the stratospheric sudden warming
,”
J. Atmos. Sci.
28
(
8
),
1479
1494
(
1971
).
27.
L. M.
Polvani
and
D. W.
Waugh
, “
Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes
,”
J. Clim.
17
(
18
),
3548
3554
(
2004
).
28.
T. G.
Shepherd
, “
The middle atmosphere
,”
J. Atmos. Sol. Terr. Phys.
62
,
1587
1601
(
2000
).
29.
A. H.
Butler
,
D. J.
Seidel
,
S. C.
Hardiman
,
N.
Butchart
,
T.
Birner
, and
A.
Match
, “
Defining sudden stratospheric warmings
,”
Bull. Am. Meteorol. Soc.
96
(
11
),
1913
1928
(
2015
).
30.
M.
Jucker
,
T.
Reichler
, and
D. W.
Waugh
, “
How frequent are Antarctic sudden stratospheric warmings in present and future climate?
Geophys. Res. Lett.
48
(
11
),
e2021GL093215
, https://doi.org/10.1029/2021GL093215 (
2021
).
31.
T.
Shepherd
,
R. A.
Plumb
, and
S. C.
Wofsy
, “
Preface
,”
J. Atmos. Sci.
62
,
565
566
(
2005
).
32.
E.-P.
Lim
,
H. H.
Hendon
,
A. H.
Butler
,
D. W. J.
Thompson
,
Z. D.
Lawrence
,
A. A.
Scaife
,
T. G.
Shepherd
,
I.
Polichtchouk
,
H.
Nakamura
,
C.
Kobayashi
,
R.
Comer
,
L.
Coy
,
A.
Dowdy
,
R. D.
Garreaud
,
P. A.
Newman
, and
G.
Wang
, “
The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts
,”
Bull. Am. Meteorol. Soc.
102
(
6
),
E1150
E1171
(
2021
).
33.
J. G.
Esler
,
L. M.
Polvani
, and
R. K.
Scott
, “
The Antarctic stratospheric sudden warming of 2002: A self-tuned resonance?
Geophys. Res. Lett.
33
,
L12804
, https://doi.org/10.1029/2006GL026034 (
2006
).
34.
E. R.
Nash
,
P. A.
Newman
,
J. E.
Rosenfield
, and
M. R.
Schoeberl
, “
An objective determination of the polar vortex using Ertel’s potential vorticity
,”
J. Geophys. Res.: Atmos.
101
(
D5
),
9471
9478
, https://doi.org/doi:10.1029/96JD00066 (
1996
).
35.
M.
Farazmand
,
D.
Blazevski
, and
G.
Haller
, “
Shearless transport barriers in unsteady two-dimensional flows and maps
,”
Phys. D
278–279
,
44
57
(
2014
).
36.
F. J.
Beron-Vera
,
M. G.
Brown
,
M. J.
Olascoaga
,
I. I.
Rypina
,
H.
Kocak
, and
I. A.
Udovydchenkov
, “
Zonal jets as transport barriers in planetary atmospheres
,”
J. Atmos. Sci.
65
,
3316
3326
(
2008
).
37.
I. I.
Rypina
,
M. G.
Brown
,
F. J.
Beron-Vera
,
H.
Kocak
,
M. J.
Olascoaga
, and
I. A.
Udovydchenkov
, “
On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex
,”
J. Atmos. Sci.
64
,
3595
3610
(
2007
).
38.
V. I.
Arnold
,
V. V.
Kozlov
, and
A. I.
Neishtadt
, “Mathematical aspects of classical and celestial mechanics,” 3rd ed., in Dynamical Systems III, Encyclopedia of Mathematical Sciences (Springer-Verlag, Berlin, 2006), Vol. 3, pp. 518.
39.
I. I.
Rypina
,
M. G.
Brown
,
F. J.
Beron-Vera
,
H.
Koçak
,
M. J.
Olascoaga
, and
I. A.
Udovydchenkov
, “
Robust transport barriers resulting from strong Kolmogorov–Arnold–Moser stability
,”
Phys. Rev. Lett.
98
,
104102
(
2007
).
40.
D.
del-Castillo-Negrete
and
P. J.
Morrison
, “
Chaotic transport by Rossby waves in shear flow
,”
Phys. Fluids A
5
(
4
),
948
965
(
1993
).
41.
D. G.
Dritschel
and
M. E.
McIntyre
, “
Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers
,”
J. Atmos. Sci.
65
,
855
874
(
2008
).
42.
M. E.
McIntyre
, “
On the Antarctic ozone hole
,”
J. Atmos. Terr. Phys.
51
,
29
43
(
1989
).
43.
J.
Curbelo
,
C. R.
Mechoso
,
A. M.
Mancho
, and
S.
Wiggins
, “
Lagrangian study of the final warming in the southern stratosphere during 2002: Part I. The vortex splitting at upper levels
,”
Clim. Dyn.
53
,
2779
2792
(
2019
).
44.
J.
Curbelo
,
G.
Chen
, and
C. R.
Mechoso
, “
Lagrangian analysis of the northern stratospheric polar vortex split in April 2020
,”
Geophys. Res. Lett.
48
(
16
),
e2021GL093874
, https://doi/org/10.1029/2021GL093874 (
2021
).
45.
A. M.
Mancho
,
S.
Wiggins
,
J.
Curbelo
, and
C.
Mendoza
, “
Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
3530
3557
(
2013
).
46.
G.
Haller
, “
A variational theory of hyperbolic Lagrangian coherent structures
,”
Phys. D
240
,
574
598
(
2011
).
47.
F.
Lekien
and
S. D.
Ross
, “
The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds
,”
Chaos
20
,
017505
(
2010
).
48.
J.
Atnip
,
G.
Froyland
, and
P.
Koltai
, “An inflated dynamic Laplacian to track the emergence and disappearance of semi-material coherent sets,” arXiv.2403.10360 (2024).
49.
G.
Froyland
and
P.
Koltai
, “
Detecting the birth and death of finite-time coherent sets
,”
Commun. Pure Appl. Math.
76
(
12
),
3642
3684
(
2023
).
50.
M.
Ndour
,
K.
Padberg-Gehle
, and
M.
Rasmussen
, “
Spectral early-warning signals for sudden changes in time-dependent flow patterns
,”
Fluids
6
,
49
(
2021
).
51.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
G. J.
Goni
, “
Surface ocean mixing inferred from different multisatellite altimetry measurements
,”
J. Phys. Oceanogr.
40
,
2466
2480
(
2010
).
52.
D.
Karrasch
, “
Attracting Lagrangian coherent structures on Riemannian manifolds
,”
Chaos
25
,
087411
(
2015
).
53.
R.
Abraham
,
J. E.
Marsden
, and
T.
Ratiu
, “Manifolds, tensor analysis and applications,” 2nd ed., in Applied Mathematical Sciences (Springer, 1988), Vol. 75.
54.
V. I.
Arnold
,
Ordinary Differential Equations
(
Massachussets Institute of Technology
,
1973
).
55.
This interpretation was first discussed in Ref. 8, but in the M = R 2 case. In Appendix G of Ref. 8, c is interpreted as the pullback by φ ° F of e. However, there is a misinterpretation regarding the view of φ as a map R 2 M. A correct interpretation of c as the pullback by F of g is given in Ref. 52, in the context of hyperbolic LCSs. More recent interpretations appear in Ref. 48,49, but these interpretations suggest a focus shift away from c in material coherence detection.
56.
F. J.
Beron-Vera
,
Y.
Wang
,
M. J.
Olascoaga
,
G. J.
Goni
, and
G.
Haller
, “
Objective detection of oceanic eddies and the Agulhas leakage
,”
J. Phys. Oceanogr.
43
,
1426
1438
(
2013
).
57.
G.
Haller
, “
Lagrangian coherent structures
,”
Ann. Rev. Fluid Mech.
47
,
137
162
(
2015
).
58.
M.
McIntyre
, “
How well do we understand the dynamics of stratospheric warmings?
J. Meteorol. Soc. Jpn.
60
,
37
65
(
1982
).
59.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
S.
Hirahara
,
A.
Horányi
,
J.
Muñoz-Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
,
D.
Schepers
,
A.
Simmons
,
C.
Soci
,
S.
Abdalla
,
X.
Abellan
,
G.
Balsamo
,
P.
Bechtold
,
G.
Biavati
,
J.
Bidlot
,
M.
Bonavita
,
G.
Chiara
,
P.
Dahlgren
,
D.
Dee
,
M.
Diamantakis
,
R.
Dragani
,
J.
Flemming
,
R.
Forbes
,
M.
Fuentes
,
A.
Geer
,
L.
Haimberger
,
S.
Healy
,
R. J.
Hogan
,
E.
Hólm
,
M.
Janisková
,
S.
Keeley
,
P.
Laloyaux
,
P.
Lopez
,
C.
Lupu
,
G.
Radnoti
,
P.
Rosnay
,
I.
Rozum
,
F.
Vamborg
,
S.
Villaume
, and
J.-N.
Thépaut
, “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
,
1999
2049
(
2020
).
60.
T. G.
Shepherd
,
J. N.
Koshyk
, and
K.
Ngan
, “
On the nature of large-scale mixing in the stratosphere and mesosphere
,”
J. Geophys. Res.
105
,
12433
12466
, https://doi.org/10.1029/2000JD900133 (
2000
).
61.
C.
Tsitouras
, “
Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption
,”
Comput. Math. Appl.
62
,
770
775
(
2011
).
62.
K.
Ngan
and
T. G.
Shepherd
, “
A closer look at chaotic advection in the stratosphere. Part I: Geometric structure
,”
J. Atmos. Sci.
56
,
4134
4152
(
1999
).
63.
K.
Stewartson
, “
The evolution of the critical layer of a Rossby wave
,”
Geophys. Astrophys. Fluid Dyn.
9
,
185
200
(
1978
).
64.
T.
Warn
and
H.
Warn
, “
The evolution of a nonlinear critical level
,”
Stud. Appl. Math.
59
,
37
71
(
1978
).
65.
M.
Serra
and
G.
Haller
, “
Objective Eulerian coherent structures
,”
Chaos
26
,
053110
(
2016
).
66.
T. G.
Shepherd
,
I.
Polichtchouk
,
R.
Hogan
, and
A. J.
Simmons
, see https://www.ecmwf.int/node/18259 for “
Report on Stratosphere Task Force. ECMWF Technical Memoranda 824
” (2018).
67.
I.
Polichtchouk
,
P.
Bechtold
,
M.
Bonavita
,
R.
Forbes
,
S.
Healy
,
R.
Hogan
,
P.
Laloyaux
,
M.
Rennie
,
T.
Stockdale
,
N.
Wedi
,
M.
Diamantakis
,
J.
Flemming
,
S.
English
,
L.
Isaksen
,
F.
Vána
,
S.
Gisinger
, and
N.
Byrne
, Stratospheric modelling and assimilation.
ECMWF Technical Memoranda 877
, https://www.ecmwf.int/node/19875 (2021).
68.
G. F. D.
Duff
, “
Limit cycles and rotated vector fields
,”
Ann. Math.
57
,
15
31
(
1953
).
69.
D.
Karrasch
,
F.
Huhn
, and
G.
Haller
, “
Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows
,”
Proc. R. Soc. A
471
,
20140639
(
2014
).
70.
D.
Karrasch
and
N.
Schilling
, “
Fast and robust computation of coherent Lagrangian vortices on very large two-dimensional domains
,”
SMAI J. Comput. Math.
6
,
101
124
(
2020
).
71.
G.
Haller
,
D.
Karrasch
, and
F.
Kogelbauer
, “
Material barriers to diffusive and stochastic transport
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
9074
9079
(
2018
).
72.
G.
Bonner
(2025). “Coherent lagrangian vortices,”
GitHub.
https://github.com/70Gage70/CoherentLagrangianVortices.
73.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
et al., “Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate,”
Copernicus Climate Change Service (C3S) Data Store (CDS)
(2017).
You do not currently have access to this content.