When placed in parallel magnetic and electric fields, the electron trajectories of a classical hydrogen atom are chaotic. The classical escape rate of such a system can be computed with classical trajectory Monte Carlo techniques, but these computations require enormous numbers of trajectories, provide little understanding of the dynamical mechanisms involved, and must be completely rerun for any change of system parameters, no matter how small. We demonstrate an alternative technique to classical trajectory Monte Carlo computations based on classical periodic orbit theory. In this technique, escape rates are computed from a relatively modest number (a few thousand) of periodic orbits of the system. One only needs the orbits’ periods and stability eigenvalues. A major advantage of this approach is that one does not need to repeat the entire analysis from scratch as system parameters are varied; one can numerically continue the periodic orbits instead. We demonstrate the periodic orbit technique for the ionization of a hydrogen atom in applied parallel electric and magnetic fields. Using fundamental theories of phase space geometry, we also show how to generate nontrivial symbolic dynamics for acquiring periodic orbits in physical systems. A detailed analysis of heteroclinic tangles and how they relate to bifurcations in periodic orbits is also presented.

1.
H.
Poincaré
, “
Sur le problème des trois corps et les équations de la dynamique
,”
Acta Math.
13
,
1
270
(
1890
).
2.
P.
Cvitanovic
, “
Periodic orbits as the skeleton of classical and quantum chaos
,”
Physica D
51
,
138
151
(
1991
).
3.
P.
Cvitanovic
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2020).
4.
M. C.
Gutzwiller
, “
Periodic orbits and classical quantization conditions
,”
J. Math. Phys.
12
,
343
358
(
1971
).
5.
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Springer
,
New York
,
1990
).
6.
A.
Holle
,
G.
Wiebusch
,
J.
Main
,
B.
Hager
,
H.
Rottke
, and
K. H.
Welge
, “
Diamagnetism of the hydrogen atom in the quasi-Landau regime
,”
Phys. Rev. Lett.
56
,
2594
2597
(
1986
).
7.
J.
Main
,
G.
Wiebusch
,
A.
Holle
, and
K. H.
Welge
, “
New quasi-Landau structure of highly excited atoms: The hydrogen atom
,”
Phys. Rev. Lett.
57
,
2789
2792
(
1986
).
8.
A.
Holle
,
J.
Main
,
G.
Wiebusch
,
H.
Rottke
, and
K. H.
Welge
, “
Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom
,”
Phys. Rev. Lett.
61
,
161
164
(
1988
).
9.
M. L.
Du
and
J. B.
Delos
, “
Effect of closed classical orbits on quantum spectra: Ionization of atoms in a magnetic field. I. Physical picture and calculations
,”
Phys. Rev. A
38
,
1896
1912
(
1988
).
10.
M. L.
Du
and
J. B.
Delos
, “
Effect of closed classical orbits on quantum spectra: Ionization of atoms in a magnetic field. II. Derivation of formulas
,”
Phys. Rev. A
38
,
1913
1930
(
1988
).
11.
J.
Main
,
G.
Wiebusch
,
K.
Welge
,
J.
Shaw
, and
J. B.
Delos
, “
Recurrence spectroscopy: Observation and interpretation of large-scale structure in the absorption spectra of atoms in magnetic fields
,”
Phys. Rev. A
49
,
847
868
(
1994
).
12.
P.
Cvitanović
and
B.
Eckhardt
, “
Periodic-orbit quantization of chaotic systems
,”
Phys. Rev. Lett.
63
,
823
826
(
1989
).
13.
D.
Wintgen
,
K.
Richter
, and
G.
Tanner
, “
The semiclassical helium atom
,”
Chaos
2
,
19
33
(
1992
).
14.
B.
Eckhardt
,
G.
Russberg
,
P.
Cvitanović
,
P. E.
Rosenqvist
, and
P.
Scherer
, “Pinball scattering,” in Quantum Chaos, edited by G. Casati and B. Chirikov (Cambridge University Press, Cambridge, 1994).
15.
S.
Sattari
and
K. A.
Mitchell
, “
Using periodic orbits to compute chaotic transport rates between resonance zones
,”
Chaos
27
,
113104
(
2017
).
16.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanovic
, “
Visualizing the geometry of state space in plane Couette flow
,”
J. Fluid Mech.
611
,
107
130
(
2008
).
17.
N. B.
Budanur
,
K. Y.
Short
,
M.
Farazmand
,
A. P.
Willis
, and
P.
Cvitanović
, “
Relative periodic orbits form the backbone of turbulent pipe flow
,”
J. Fluid Mech.
833
,
274
301
(
2017
).
18.
M. D.
Graham
and
D.
Floryan
, “
Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows
,”
Annu. Rev. Fluid Mech.
53
,
227
253
(
2021
).
19.
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
Transition to turbulence in pipe flow
,”
Annu. Rev. Fluid Mech.
55
,
575
602
(
2023
).
20.
K. A.
Mitchell
, “
Partitioning two-dimensional mixed phase spaces
,”
Physica D
241
,
1718
1734
(
2012
).
21.
J.
Gao
,
J. B.
Delos
, and
M.
Baruch
, “
Closed-orbit theory of oscillations in atomic photoabsorption cross sections in a strong electric field. I. Comparison between theory and experiments on hydrogen and sodium above threshold
,”
Phys. Rev. A
46
,
1449
1454
(
1992
).
22.
J.
Gao
and
J. B.
Delos
, “
Closed-orbit theory of oscillations in atomic photoabsorption cross sections in a strong electric field. II. Derivation of formulas
,”
Phys. Rev. A
46
,
1455
1467
(
1992
).
23.
J.
Gao
and
J. B.
Delos
, “
Resonances and recurrences in the absorption spectrum of an atom in an electric field
,”
Phys. Rev. A
49
,
869
880
(
1994
).
24.
K. A.
Mitchell
,
J. P.
Handley
,
B.
Tighe
,
A.
Flower
, and
J. B.
Delos
, “
Analysis of chaos-induced pulse trains in the ionization of hydrogen
,”
Phys. Rev. A
70
,
043407
(
2004
).
25.
M. R.
Haggerty
and
J. B.
Delos
, “
Recurrence spectroscopy in time-dependent fields
,”
Phys. Rev. A
61
,
053406
(
2000
).
26.
V.
Deshmukh
,
R.
Meikle
,
E.
Bradley
,
J. D.
Meiss
, and
J.
Garland
, “
Using scaling-region distributions to select embedding parameters
,”
Physica D
446
,
133674
(
2023
).
27.
P.
Collins
, “Dynamics forced by surface trellises,” in Geometry and Topology in Dynamics, Contemporary Mathematics Vol. 246 (American Mathematical Society, Providence, RI, 1999), pp. 65–86.
28.
F.
Gonzalez
and
C.
Jung
, “
A development scenario connecting the ternary symmetric horseshoe with the binary horseshoe
,”
Chaos
24
,
043141
(
2014
).
29.
C.
Jung
,
C.
Lipp
, and
T.
Seligman
, “
The inverse scattering problem for chaotic Hamiltonian systems
,”
Ann. Phys.
275
,
151
189
(
1999
).
You do not currently have access to this content.