Networks model the architecture backbone of complex systems. The backbone itself can change over time leading to what is called “temporal networks.” Interpreting temporal networks as trajectories in graph space of a latent graph dynamics has recently enabled the extension of concepts and tools from dynamical systems and time series to networks. Here, we address temporal networks with unlabeled nodes, a case that has received relatively little attention so far. Situations in which node labeling cannot be tracked over time often emerge in practice due to technical challenges or privacy constraints. In unlabeled temporal networks, there is no one-to-one matching between a network snapshot and its adjacency matrix. Characterizing the dynamical properties of such unlabeled network trajectories is, therefore, nontrivial. Here, we exploit graph invariants to extend some recently proposed network-dynamical quantifiers of linear correlations and dynamical instability to the unlabeled setting. In particular, we focus on autocorrelation functions and the sensitive dependence on initial conditions. We show with synthetic graph dynamics that the measures are capable of recovering and estimating these dynamical fingerprints even when node labels are unavailable. We also validate the methods for some empirical temporal networks with removed node labels.

1.
K.
Zhao
,
J.
Stehlé
,
G.
Bianconi
, and
A.
Barrat
, “
Social network dynamics of face-to-face interactions
,”
Phys. Rev. E
83
,
056109
(
2011
).
2.
G.
Palla
,
P.
Pollner
,
A.
Barabási
, and
T.
Vicsek
, “Social group dynamics in networks,” in Adaptive Networks, Understanding Complex Systems (Springer Verlag, Berlin, 2009), p. 11.
3.
D. S.
Bassett
and
O.
Sporns
, “
Network neuroscience
,”
Nat. Neurosci.
20
,
353
(
2017
).
4.
S. I.
Dimitriadis
,
N. A.
Laskaris
,
V.
Tsirka
,
M.
Vourkas
,
S.
Micheloyannis
, and
S.
Fotopoulos
, “
Tracking brain dynamics via time-dependent network analysis
,”
J. Neurosci. Methods
193
,
145
(
2010
).
5.
V.
Latora
,
V.
Nicosia
, and
G.
Russo
,
Complex Networks: Principles, Methods and Applications
(
Cambridge University Press
,
Cambridge
,
2017
).
6.
M.
Newman
,
Networks
(
Oxford University Press
,
Oxford
,
2018
).
7.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
(
2012
).
8.
N.
Masuda
and
R.
Lambiotte
, A Guide to Temporal Networks, Series on Complexity Science Vol. 4 (World Scientific, Europe, 2016), p. 252.
9.
V.
Nicosia
,
J.
Tang
,
C.
Mascolo
,
M.
Musolesi
,
G.
Russo
, and
V.
Latora
, “Graph metrics for temporal networks,” in Temporal Networks, edited by P. Holme and J. Saramäki (Springer, Berlin, 2013), p. 15.
10.
N.
Masuda
,
K.
Klemm
, and
V. M.
Eguíluz
, “
Temporal networks: Slowing down diffusion by long lasting interactions
,”
Phys. Rev. Lett.
111
,
188701
(
2013
).
11.
J.-C.
Delvenne
,
R.
Lambiotte
, and
L. E. C.
Rocha
, “
Diffusion on networked systems is a question of time or structure
,”
Nat. Commun.
6
,
7366
(
2015
).
12.
I.
Scholtes
,
N.
Wider
,
R.
Pfitzner
,
A.
Garas
,
C. J.
Tessone
, and
F.
Schweitzer
, “
Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks
,”
Nat. Commun.
5
,
5024
(
2014
).
13.
M.
Starnini
,
A.
Baronchelli
, and
R.
Pastor-Satorras
, “
Modeling human dynamics of face-to-face interaction networks
,”
Phys. Rev. Lett.
110
,
168701
(
2013
).
14.
P.
Mazzarisi
,
P.
Barucca
,
F.
Lillo
, and
D.
Tantari
, “
A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market
,”
Eur. J. Oper. Res.
281
,
50
(
2020
).
15.
T.
Hiraoka
and
H.-H.
Jo
, “
Correlated bursts in temporal networks slow down spreading
,”
Sci. Rep.
8
,
15321
(
2018
).
16.
P.
Van Mieghem
and
R.
van de Bovenkamp
, “
Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks
,”
Phys. Rev. Lett.
110
,
108701
(
2013
).
17.
W. H.
Thompson
,
P.
Brantefors
, and
P.
Fransson
, “
From static to temporal network theory: Applications to functional brain connectivity
,”
Network Neurosci.
1
,
69
(
2017
).
18.
M.
Zanin
,
L.
Lacasa
, and
M.
Cea
, “
Dynamics in scheduled networks
,”
Chaos
19
,
023111
(
2009
).
19.
M.
Zanin
and
F.
Lillo
, “
Modelling the air transport with complex networks: A short review
,”
Eur. Phys. J.: Spec. Top.
215
,
5
(
2013
).
20.
O. E.
Williams
,
F.
Lillo
, and
V.
Latora
, “
Effects of memory on spreading processes in non-Markovian temporal networks
,”
New J. Phys.
21
,
043028
(
2019
).
21.
O. E.
Williams
,
L.
Lacasa
,
A. P.
Millán
, and
V.
Latora
, “
The shape of memory in temporal networks
,”
Nat. Commun.
13
,
499
(
2022
).
22.
L.
Lacasa
,
J. P.
Rodriguez
, and
V. M.
Eguiluz
, “
Correlations of network trajectories
,”
Phys. Rev. Res.
4
,
L042008
(
2022
).
23.
A.
Caligiuri
,
V. M.
Eguíluz
,
L.
Di Gaetano
,
T.
Galla
, and
L.
Lacasa
, “
Lyapunov exponents for temporal networks
,”
Phys. Rev. E
107
,
044305
(
2023
).
24.
K.
Danovski
,
M. C.
Soriano
, and
L.
Lacasa
, “
Dynamical stability and chaos in artificial neural network trajectories along training
,”
Front. Complex Syst.
2
,
1367957
(
2024
).
25.
C.
Thongprayoon
,
L.
Livi
, and
N.
Masuda
, “
Embedding and trajectories of temporal networks
,”
IEEE Access
11
,
41426
(
2023
).
26.
H.
Hartle
and
N.
Masuda
, “Autocorrelation properties of temporal networks governed by dynamic node variables,” arXiv:2408.16270 (2024).
27.
L.
Lacasa
,
F. J.
Marín-Rodríguez
,
N.
Masuda
, and
L.
Arola-Fernández
, “Scalar embedding of temporal network trajectories,” arXiv:2412.02715 (2024).
28.
A.
Attanasi
,
A.
Cavagna
,
L.
Del Castello
,
I.
Giardina
,
A.
Jelić
,
S.
Melillo
,
L.
Parisi
,
F.
Pellacini
,
E.
Shen
,
E.
Silvestri
, and
M.
Viale
, “
Greta-a novel global and recursive tracking algorithm in three dimensions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
37
,
2451
(
2015
).
29.
R. J.
Lennox
,
K.
Aarestrup
,
S. J.
Cooke
,
P. D.
Cowley
,
Z. D.
Deng
,
A. T.
Fisk
,
R. G.
Harcourt
,
M.
Heupel
,
S. G.
Hinch
,
K. N.
Holland
,
N. E.
Hussey
,
S. J.
Iverson
,
S. T.
Kessel
,
J. F.
Kocik
,
M. C.
Lucas
,
J. M.
Flemming
,
V. M.
Nguyen
,
M. J. W.
Stokesbury
,
S.
Vagle
,
D. L.
VanderZwaag
,
F. G.
Whoriskey
, and
N.
Young
, “
Envisioning the future of aquatic animal tracking: Technology, science, and application
,”
BioScience
67
,
884
(
2017
).
30.
C.
Zhang
,
J.
Sun
,
X.
Zhu
, and
Y.
Fang
, “
Privacy and security for online social networks: Challenges and opportunities
,”
IEEE Network
24
,
13
(
2010
).
31.
E.
Zheleva
and
L.
Getoor
, “Privacy in social networks: A survey,” in Social Network Data Analytics, edited by C. C. Aggarwal (Springer US, Boston, MA, 2011), p. 277.
32.
G.
Cencetti
,
G.
Santin
,
A.
Longa
,
E.
Pigani
,
A.
Barrat
,
C.
Cattuto
,
S.
Lehmann
,
M.
Salathé
, and
B.
Lepri
, “
Digital proximity tracing on empirical contact networks for pandemic control
,”
Nat. Commun.
12
,
1655
(
2021
).
33.
P.
Rodríguez
,
S.
Graña
,
E. E.
Alvarez-León
,
M.
Battaglini
,
F. J.
Darias
,
M. A.
Hernán
,
R.
López
,
P.
Llaneza
,
M. C.
Martín
,
RadarCovidPilot Group
et al., “
A population-based controlled experiment assessing the epidemiological impact of digital contact tracing
,”
Nat. Commun.
12
,
587
(
2021
).
34.
K.
López-Pérez
,
J. F.
Avellaneda-Tamayo
,
L.
Chen
,
E.
López-López
,
K. E.
Juárez-Mercado
,
J. L.
Medina-Franco
, and
R. A.
Miranda-Quintana
, “
Molecular similarity: Theory, applications, and perspectives
,”
Artif. Intell. Chem.
2
,
100077
(
2024
).
35.
A.
Bondy
and
U. S. R.
Murty
, Graph Theory, Graduate Texts in Mathematics (Springer, London, 2008).
36.
L.
Babai
,
P.
Erdős
, and
S. M.
Selkow
, “
Random graph isomorphism
,”
SIAM J. Comput.
9
,
628
(
1980
).
37.
J.
Yan
,
X.-C.
Yin
,
W.
Lin
,
C.
Deng
,
H.
Zha
, and
X.
Yang
, “A short survey of recent advances in graph matching,” in Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (ICMR ’16) (Association for Computing Machinery, New York, NY, 2016), p. 167.
38.
B. D.
McKay
and
A.
Piperno
, “
Practical graph isomorphism, II
,”
J. Symb. Comput.
60
,
94
(
2014
).
39.
L.
Babai
and
E. M.
Luks
, “Canonical labeling of graphs,” in Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83 (Association for Computing Machinery, New York, NY, 1983), p. 171.
40.
P.
Wills
and
F. G.
Meyer
, “
Metrics for graph comparison: A practitioner’s guide
,”
PLoS One
15
,
1
(
2020
).
41.
T. A.
Schieber
,
L.
Carpi
,
A.
Díaz-Guilera
,
P. M.
Pardalos
,
C.
Masoller
, and
M. G.
Ravetti
, “
Quantification of network structural dissimilarities
,”
Nat. Commun.
8
,
13928
(
2017
).
42.
B. J.
Jain
and
K.
Obermayer
, “
Structure spaces
,”
J. Mach. Learn. Res.
10
,
2667
2714
(
2009
).
43.
A.
Calissano
,
A.
Feragen
, and
S.
Vantini
, “
Populations of unlabelled networks: Graph space geometry and generalized geodesic principal components
,”
Biometrika
111
,
147
170
(
2024
).
44.
E. M.
Wright
, “
The evolution of unlabelled graphs
,”
J. Lond. Math. Soc.
s2-14
,
554
(
1976
).
45.
B.
Bollobás
, “
The asymptotic number of unlabelled regular graphs
,”
J. Lond. Math. Soc.
s2-26
,
201
(
1982
).
46.
T. R. S.
Walsh
and
E. M.
Wright
, “
The k-connectedness of unlabelled graphs
,”
J. Lond. Math. Soc.
s2-18
,
397
(
1978
).
47.
H.
Hartle
,
B.
Klein
,
S.
McCabe
,
A.
Daniels
,
G.
St-Onge
,
C.
Murphy
, and
L.
Hébert-Dufresne
, “
Network comparison and the within-ensemble graph distance
,”
Proc. R. Soc. A
476
,
20190744
(
2020
).
48.
J.
Paton
,
H.
Hartle
,
H.
Stepanyants
,
P.
van der Hoorn
, and
D.
Krioukov
, “
Entropy of labeled versus unlabeled networks
,”
Phys. Rev. E
106
,
054308
(
2022
).
49.
A.
Caligiuri
,
D.
Papo
,
G.
Yener
,
B.
Güntekin
,
T.
Galla
,
L.
Lacasa
, and
M.
Zanin
, “Predictability of temporal network dynamics in normal ageing and brain pathology,” arXiv:2502.16557 (2025).
50.
I.
Jovanović
and
Z.
Stanić
, “Spectral distances of graphs,” in Linear Algebra and Its Applications (Springer, 2012, Vol. 436, p. 1425.)
51.
A. E.
Brouwer
and
W. H.
Haemers
,
Spectra of Graphs
, 1st ed. (
Springer
,
New York
,
2012
), Vol. XIV, p.
250
.
52.
P.
Bonacich
, “
Some unique properties of eigenvector centrality
,”
Social Networks
29
,
555
(
2007
).
53.
I. J.
Schoenberg
, “Publications of edmund landau,” in Number Theory and Analysis: A Collection of Papers in Honor of Edmund Landau (1877–1938), edited by P. Turán (Springer US, Boston, MA, 1969), p. 335.
54.
K.
Kaneko
, “
Mean field fluctuation of a network of chaotic elements
,”
Physica D
55
,
368
(
1992
).
55.
S.
Morita
, “
Scaling law for the Lyapunov spectra in globally coupled tent maps
,”
Phys. Rev. E
58
,
4401
(
1998
).
56.
S.
Morita
, “
Lyapunov analysis of collective behavior in a network of chaotic elements
,”
Phys. Lett. A
226
,
172
(
1997
).
57.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2003
).
58.
M. J.
Williams
and
M.
Musolesi
, “
Spatio-temporal networks: Reachability, centrality and robustness
,”
R. Soc. Open Sci.
3
,
160196
(
2016
).
59.
L.
Ozella
,
D.
Paolotti
,
G.
Lichand
,
J. P.
Rodríguez
,
S.
Haenni
,
J.
Phuka
,
O. B.
Leal-Neto
, and
C.
Cattuto
, “
Using wearable proximity sensors to characterize social contact patterns in a village of rural malawi
,”
EPJ Data Sci.
10
,
46
(
2021
).
60.
M.
Génois
and
A.
Barrat
, “
Can co-location be used as a proxy for face-to-face contacts?
,”
EPJ Data Sci.
7
,
11
(
2018
).
61.
L.
Gallo
,
L.
Lacasa
,
V.
Latora
, and
F.
Battiston
, “
Higher-order correlations reveal complex memory in temporal hypergraphs
,”
Nat. Commun.
15
,
4754
(
2024
).
You do not currently have access to this content.