We analyze experimentally and theoretically the response of a network of spiking nodes to external perturbations. The experimental system consists of an array of semiconductor lasers that are adaptively coupled through an optoelectronic feedback signal. This coupling signal can be tuned from one to all to globally coupled and makes the network collectively excitable. We relate the excitable response of the network to the existence of a separatrix in phase space and analyze the effect of noise close to this separatrix. We find numerically that larger networks are more robust to uncorrelated noise sources in the nodes than small networks, in contrast to the experimental observations. We remove this discrepancy considering the impact of a global noise term in the adaptive coupling signal and discuss our observations in relation to the network structure.

1.
S.
Yanchuk
,
A. C.
Roque
,
E. E.
Macau
, and
J.
Kurths
, “Dynamical phenomena in complex networks: Fundamentals and applications,”
Eur. Phys. J. Spec. Top.
1–6 (2021).
2.
M.
Zaks
,
X.
Sailer
,
L.
Schimansky-Geier
, and
A.
Neiman
, “
Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems
,”
Chaos
15
,
26117
(
2005
).
3.
D.
Orr
and
G. B.
Ermentrout
, “
Noise-driven oscillations in coupled excitable systems
,”
SIAM J. Appl. Dyn. Syst.
20
,
826
852
(
2021
).
4.
A.
Khaledi-Nasab
,
J. A.
Kromer
,
L.
Schimansky-Geier
, and
A. B.
Neiman
, “
Variability of collective dynamics in random tree networks of strongly coupled stochastic excitable elements
,”
Phys. Rev. E
98
,
052303
(
2018
).
5.
B.
Sonnenschein
,
M. A.
Zaks
,
A. B.
Neiman
, and
L.
Schimansky-Geier
, “
Excitable elements controlled by noise and network structure
,”
Eur. Phys. J. Spec. Top.
222
,
2517
2529
(
2013
).
6.
M.
Masoliver
,
N.
Malik
,
E.
Schöll
, and
A.
Zakharova
, “
Coherence resonance in a network of Fitzhugh-Nagumo systems: Interplay of noise, time-delay, and topology
,”
Chaos
27
,
101102
(
2017
).
7.
G.
Marcucci
,
D.
Pierangeli
, and
C.
Conti
, “
Theory of neuromorphic computing by waves: Machine learning by rogue waves, dispersive shocks, and solitons
,”
Phys. Rev. Lett.
125
,
093901
(
2020
).
8.
D.
Marković
,
A.
Mizrahi
,
D.
Querlioz
, and
J.
Grollier
, “
Physics for neuromorphic computing
,”
Nat. Rev. Phys.
2
,
499
510
(
2020
).
9.
K.
Roy
,
A.
Jaiswal
, and
P.
Panda
, “
Towards spike-based machine intelligence with neuromorphic computing
,”
Nature
575
,
607
617
(
2019
).
10.
A.
Skalli
,
J.
Robertson
,
D.
Owen-Newns
,
M.
Hejda
,
X.
Porte
,
S.
Reitzenstein
,
A.
Hurtado
, and
D.
Brunner
, “
Photonic neuromorphic computing using vertical cavity semiconductor lasers
,”
Opt. Mater. Express
12
,
2395
2414
(
2022
).
11.
B.
Romeira
,
R. R.
Adão
,
J. B.
Nieder
,
Q.
Al-Taai
,
W.
Zhang
,
R. H.
Hadfield
,
E.
Wasige
,
M.
Hejda
,
A.
Hurtado
,
E.
Malysheva
et al., “
Brain-inspired nanophotonic spike computing: Challenges and prospects
,”
Neuromorph. Comput. Eng.
3
,
033001
(
2023
).
12.
I. K.
Boikov
,
A.
de Rossi
, and
M. A.
Petrovici
, “Ultrafast neural sampling with spiking nanolasers,” arXiv:2501.14446 (2025).
13.
A.
Dolcemascolo
,
B.
Garbin
,
B.
Peyce
,
R.
Veltz
, and
S.
Barland
, “
Resonator neuron and triggering multipulse excitability in laser with injected signal
,”
Phys. Rev. E
98
,
062211
(
2018
).
14.
B.
Kelleher
,
M.
Dillane
, and
E. A.
Viktorov
, “
Optical information processing using dual state quantum dot lasers: Complexity through simplicity
,”
Light: Sci. Appl.
10
,
238
(
2021
).
15.
J.
Tiana-Alsina
and
C.
Masoller
, “
Quantifying the synchronization of the spikes emitted by coupled lasers
,”
Chaos
33
,
073124
(
2023
).
16.
A.
Jha
,
C.
Huang
,
H.-T.
Peng
,
B.
Shastri
, and
P. R.
Prucnal
, “
Photonic spiking neural networks and graphene-on-silicon spiking neurons
,”
J. Lightwave Technol.
40
,
2901
2914
(
2022
).
17.
A.
Perego
and
M.
Lamperti
, “
Collective excitability, synchronization, and array-enhanced coherence resonance in a population of lasers with a saturable absorber
,”
Phys. Rev. A
94
,
033839
(
2016
).
18.
M.
Lamperti
and
A.
Perego
, “
Disorder-induced localization of excitability in an array of coupled lasers
,”
Phys. Rev. A
96
,
041803
(
2017
).
19.
K.
Alfaro-Bittner
,
S.
Barbay
, and
M.
Clerc
, “
Pulse propagation in a 1D array of excitable semiconductor lasers
,”
Chaos
30
,
083136
(
2020
).
20.
B.
Garbin
,
J.
Javaloyes
,
G.
Tissoni
, and
S.
Barland
, “
Topological solitons as addressable phase bits in a driven laser
,”
Nat. Commun.
6
,
5915
(
2015
).
21.
B.
Romeira
,
R.
Avó
,
J. M.
Figueiredo
,
S.
Barland
, and
J.
Javaloyes
, “
Regenerative memory in time-delayed neuromorphic photonic resonators
,”
Sci. Rep.
6
,
19510
(
2016
).
22.
S.
Terrien
,
B.
Krauskopf
,
N. G.
Broderick
,
L.
Andréoli
,
F.
Selmi
,
R.
Braive
,
G.
Beaudoin
,
I.
Sagnes
, and
S.
Barbay
, “
Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback
,”
Phys. Rev. A
96
,
043863
(
2017
).
23.
J.
Robertson
,
E.
Wade
,
Y.
Kopp
,
J.
Bueno
, and
A.
Hurtado
, “
Toward neuromorphic photonic networks of ultrafast spiking laser neurons
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
1
15
(
2019
).
24.
A. M.
Yacomotti
,
G. B.
Mindlin
,
M.
Giudici
,
S.
Balle
,
S.
Barland
, and
J.
Tredicce
, “
Coupled optical excitable cells
,”
Phys. Rev. E
66
,
036227
(
2002
).
25.
B.
Kelleher
,
C.
Bonatto
,
P.
Skoda
,
S.
Hegarty
, and
G.
Huyet
, “
Excitation regeneration in delay-coupled oscillators
,”
Phys. Rev. E
81
,
036204
(
2010
).
26.
T.
Deng
,
J.
Robertson
, and
A.
Hurtado
, “
Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: Towards neuromorphic photonic networks
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
1
8
(
2017
).
27.
J.
Feldmann
,
N.
Youngblood
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H.
Pernice
, “
All-optical spiking neurosynaptic networks with self-learning capabilities
,”
Nature
569
,
208
214
(
2019
).
28.
K.
Al-Naimee
,
F.
Marino
,
M.
Ciszak
,
S.
Abdalah
,
R.
Meucci
, and
F.
Arecchi
, “
Excitability of periodic and chaotic attractors in semiconductor lasers with optoelectronic feedback
,”
Eur. Phys. J. D
58
,
187
189
(
2010
).
29.
T.
Inagaki
,
K.
Inaba
,
T.
Leleu
,
T.
Honjo
,
T.
Ikuta
,
K.
Enbutsu
,
T.
Umeki
,
R.
Kasahara
,
K.
Aihara
, and
H.
Takesue
, “
Collective and synchronous dynamics of photonic spiking neurons
,”
Nat. Commun.
12
,
2325
(
2021
).
30.
M.
Hejda
,
J. A.
Alanis
,
I.
Ortega-Piwonka
,
J.
Lourenço
,
J.
Figueiredo
,
J.
Javaloyes
,
B.
Romeira
, and
A.
Hurtado
, “
Resonant tunneling diode nano-optoelectronic excitable nodes for neuromorphic spike-based information processing
,”
Phys. Rev. Appl.
17
,
024072
(
2022
).
31.
A.
Dolcemascolo
,
A.
Miazek
,
R.
Veltz
,
F.
Marino
, and
S.
Barland
, “
Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers
,”
Phys. Rev. E
101
,
052208
(
2020
).
32.
J.
Balzer
,
R.
Berner
,
K.
Lüdge
,
S.
Wieczorek
,
J.
Kurths
, and
S.
Yanchuk
, “
Canard cascading in networks with adaptive mean-field coupling
,”
Phys. Rev. Lett.
133
,
237401
(
2024
).
33.
O.
D’Huys
,
R.
Veltz
,
A.
Dolcemascolo
,
F.
Marino
, and
S.
Barland
, “
Canard resonance: On noise-induced ordering of trajectories in heterogeneous networks of slow-fast systems
,”
J. Phys.: Photonics
3
,
024010
(
2021
).
34.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1031
,
1
59
(
2023
).
35.
T.
Gross
,
C. J. D.
D’Lima
, and
B.
Blasius
, “
Epidemic dynamics on an adaptive network
,”
Phys. Rev. Lett.
96
,
208701
(
2006
).
36.
C.
Meisel
and
T.
Gross
, “
Adaptive self-organization in a realistic neural network model
,”
Phys. Rev. E
80
,
061917
(
2009
).
37.
J.
Sawicki
,
R.
Berner
,
T.
Löser
, and
E.
Schöll
, “
Modeling tumor disease and sepsis by networks of adaptively coupled phase oscillators
,”
Front. Network Physiol.
1
,
730385
(
2022
).
38.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
What adaptive neuronal networks teach us about power grids
,”
Phys. Rev. E
103
,
042315
(
2021
).
39.
M.
Ciszak
,
S.
Olmi
,
G.
Innocenti
,
A.
Torcini
, and
F.
Marino
, “
Collective canard explosions of globally-coupled rotators with adaptive coupling
,”
Chaos, Solitons Fractals
153
,
111592
(
2021
).
40.
M.
Ciszak
and
F.
Marino
, “Type-III intermittency in emergent bursting dynamics of globally coupled rotators,” arXiv:2410.07953 (2024).
41.
M.
Ciszak
,
F.
Marino
,
A.
Torcini
, and
S.
Olmi
, “
Emergent excitability in populations of nonexcitable units
,”
Phys. Rev. E
102
,
050201
(
2020
).
42.
A.
Dolcemascolo
, “Semiconductor laser for modelling and controlling spiking cells and networks,” Ph.D. thesis (Université Côte d’Azur, 2018), see https://tel.archives-ouvertes.fr/tel-02100034/file/2018AZUR4208.pdf.
43.
F.
Pedaci
,
Z.
Huang
,
M.
van Oene
,
S.
Barland
, and
N. H.
Dekker
, “
Excitable particles in an optical torque wrench
,”
Nat. Phys.
7
,
259
264
(
2011
).
44.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equ.
31
,
53
98
(
1979
).
45.
M. I.
Freidlin
and
A. D.
Wentzell
, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften Vol. 260 (Springer, Berlin, 2012).
46.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer Science & Business Media
,
2013
), Vol. 132.
47.
R.
Veltz
, BifurcationKit.jl, hal-02902346 (2020), https://hal.archives-ouvertes.fr/hal-02902346.
48.
S.
Danisch
and
J.
Krumbiegel
, “
Makie.jl: Flexible high-performance data visualization for Julia
,”
J. Open Source Softw.
6
,
3349
(
2021
).
49.
S. M.
Wieczorek
, “Noise synchronization and stochastic bifurcations in lasers,” in Nonlinear Laser Dynamics: From Quantum Dots to Cryptography (Wiley, 2011), pp. 269–291.
50.
N.
Semenova
,
X.
Porte
,
L.
Andreoli
,
M.
Jacquot
,
L.
Larger
, and
D.
Brunner
, “
Fundamental aspects of noise in analog-hardware neural networks
,”
Chaos
29
,
103128
(
2019
).
You do not currently have access to this content.