With specific nonlinearity, discrete memristors can form excellent chaotic systems through different coupling models. This work proposes a step-wise coupling method for constructing a mapping model. Based on second-order coupling, a novel trigonometric step-wise discrete memristive (TSDM) map is constructed by coupling a sine discrete memristor with a cosine discrete memristor. The dynamical behaviors, tuned by parameters and initial values, are investigated using various numerical methods. It is found that there is a local offset behavior of the attractor in the TSDM map, which is highly sensitive to the initial value. The TSDM map was implemented using a microcontroller, and a TSDM map-based pseudo-random number generator was designed.
REFERENCE
1.
L. O.
Chua
, “Memristor—The missing circuit element
,” IEEE Trans. Circuit Theory
18
, 507
–519
(1971
). 2.
T. F.
Fozin Fonzin
, K.
Srinivasan
, J.
Kengne
, and F. B.
Relap
, “Coexisting bifurcations in a memristive hyperchaotic oscillator
,” AEU—Int. J. Electron. Commun.
90
, 110
–122
(2018
). 3.
O.
Krestinskaya
, K. N.
Salama
, and A. P.
James
, “Learning in memristive neural network architectures using analog backpropagation circuits
,” IEEE Trans. Circuits Syst. I: Regul. Pap.
66
, 719
–732
(2019
). 4.
H.
Lin
, C.
Wang
, Q.
Deng
, C.
Xu
, Z.
Deng
, and C.
Zhou
, “Review on chaotic dynamics of memristive neuron and neural network
,” Nonlinear Dyn.
106
, 959
–973
(2021
). 5.
S.
Kumar
, X.
Wang
, J. P.
Strachan
, Y.
Yang
, and W. D.
Lu
, “Dynamical memristors for higher-complexity neuromorphic computing
,” Nat. Rev. Mater.
7
, 575
–591
(2022
). 6.
P.
Yao
, H.
Wu
, B.
Gao
, J.
Tang
, Q.
Zhang
, W.
Zhang
, J. J.
Yang
, and H.
Qian
, “Fully hardware-implemented memristor convolutional neural network
,” Nature
577
, 641
–646
(2020
). 7.
X.
Ma
, J.
Mou
, J.
Liu
, C.
Ma
, F.
Yang
, and X.
Zhao
, “A novel simple chaotic circuit based on memristor-memcapacitor
,” Nonlinear Dyn.
100
, 2859
–2876
(2020
). 8.
R.
Yan
, Q.
Hong
, C.
Wang
, J.
Sun
, and Y.
Li
, “Multilayer memristive neural network circuit based on online learning for license plate detection
,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.
41
, 3000
–3011
(2022
). 9.
S.
He
, D.
Zhan
, H.
Wang
, K.
Sun
, and Y.
Peng
, “Discrete memristor and discrete memristive systems
,” Entropy
24
, 786
(2022
). 10.
S.
He
, K.
Sun
, Y.
Peng
, and L.
Wang
, “Modeling of discrete fracmemristor and its application
,” AIP Adv.
10
, 015332
(2020
). 11.
J.
Ramadoss
, A.
Ouannas
, V. K.
Tamba
, G.
Grassi
, S.
Momani
, and V. T.
Pham
, “Constructing non-fixed-point maps with memristors
,” Eur. Phys. J. Plus
137
, 211
(2022
). 12.
H.
Bao
, Z.
Hua
, N.
Wang
, L.
Zhu
, M.
Chen
, and B.
Bao
, “Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation
,” IEEE Trans. Ind. Inf.
17
, 1132
–1140
(2021
). 13.
C.
Li
, B.
Feng
, S.
Li
, J.
Kurths
, and G.
Chen
, “Dynamic analysis of digital chaotic maps via state-mapping networks
,” IEEE Trans. Circuits Syst. I: Regul. Pap.
66
, 2322
–2335
(2019
). 14.
B. C.
Bao
, H. Z.
Li
, L.
Zhu
, X.
Zhang
, and M.
Chen
, “Initial-switched boosting bifurcations in 2D hyperchaotic map
,” Chaos
30
, 033107
(2020
). 15.
B. C.
Bao
, H.
Li
, H.
Wu
, X.
Zhang
, and M.
Chen
, “Hyperchaos in a second-order discrete memristor-based map model
,” Electron. Lett.
56
, 769
–770
(2020
). 16.
H.
Li
, Z.
Hua
, H.
Bao
, L.
Zhu
, M.
Chen
, and B.
Bao
, “Two-dimensional memristive hyperchaotic maps and application in secure communication
,” IEEE Trans. Ind. Electron.
68
, 9931
–9940
(2021
). 17.
S.
Vaidyanathan
, V. T.
Pham
, and C.
Volos
, “Adaptive control, synchronization and circuit simulation of a memristor-based hyperchaotic system with hidden attractors
,” Adv. Memristors Memristive Devices Syst.
701
, 101
–130
(2017
). 18.
H.
Lin
, C.
Wang
, L.
Cui
, Y.
Sun
, C.
Xu
, and F.
Yu
, “Brain-like initial-boosted hyperchaos and application in biomedical image encryption
,” IEEE Trans. Ind. Inf.
18
, 8839
–8850
(2022
). 19.
F.
Yu
, L.
Liu
, S.
Qian
, L.
Li
, Y.
Huang
, C.
Shi
, and Q.
Wan
, “Chaos-based application of a novel multistable 5D memristive hyperchaotic system with coexisting multiple attractors
,” Complexity
2020
, 8034196
(2020
).20.
Z.
Hua
, Y.
Zhou
, and B.
Bao
, “Two-dimensional sine chaotification system with hardware implementation
,” IEEE Trans. Ind. Inf.
16
, 887
–897
(2020
). 21.
Y.
Deng
and Y.
Li
, “Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map
,” Chaos Soliton. Fract.
150
, 111064
(2021
). 22.
H.
Bao
, Z.
Hua
, H.
Li
, M.
Chen
, and B.
Bao
, “Discrete memristor hyperchaotic maps
,” IEEE Trans. Circuits Syst. I: Regul. Pap.
68
, 4534
–4544
(2021
). 23.
F.
Yuan
, G.
Xing
, and Y.
Deng
, “Flexible cascade and parallel operations of discrete memristor
,” Chaos Soliton. Fract.
166
, 112888
(2023
). 24.
S.
Zhang
, H.
Zhang
, and C.
Wang
, “Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps
,” Chaos Soliton. Fract.
174
, 113885
(2023
). 25.
Y.
Peng
, K.
Sun
, and S.
He
, “A discrete memristor model and its application in Hénon map
,” Chaos Soliton. Fract.
137
, 109873
(2020
). 26.
M.
Ma
, Y.
Yang
, Z.
Qiu
, Y.
Peng
, Y.
Sun
, Z.
Li
, and M.
Wang
, “A locally active discrete memristor model and its application in a hyperchaotic map
,” Nonlinear Dyn.
107
, 2935
–2949
(2022
). 27.
B.
Li
, K.
Sun
, H.
Wang
, and W.
Liu
, “The hyperbolic sine chaotification model and its applications
,” Phys. Scr.
99
, 075274
(2024
). 28.
J.
Ying
, Y.
Liang
, G.
Wang
, H. H. C.
Lu
, J.
Zhang
, and P.
Jin
, “Locally active memristor based oscillators: The dynamic route from period to chaos and hyperchaos
,” Chaos
31
, 063114
(2021
). 29.
S.
Zhang
, H.
Zhang
, and C.
Wang
, “Dynamical analysis and applications of a novel 2-D hybrid dual-memristor hyperchaotic map with complexity enhancement
,” Nonlinear Dyn.
111
, 15487
–15513
(2023
). 30.
Y.
Gu
, H.
Bao
, Q.
Xu
, X.
Zhang
, and B.
Bao
, “Cascaded Bi-memristor hyperchaotic map
,” IEEE Trans. Circuits Syst. II: Express Briefs
70
, 3109
–3113
(2023
).31.
K.
Li
, Q.
Wang
, Q.
Zheng
, X.
Yu
, B.
Liang
, and Z.
Tian
, “Reducible-dimension discrete memristive chaotic map
,” Nonlinear Dyn.
113
, 861
–894
(2025
). 32.
C.
Li
, Y.
Jiang
, R.
Wang
, and Z.
Liu
, “Periodic offset boosting for attractor self-reproducing
,” Chaos
31
, 113108
(2021
). 33.
Y.
Zhang
, Z.
Hua
, H.
Bao
, and H.
Huang
, “Multi-valued model for generating complex chaos and fractals
,” IEEE Trans. Circuits Syst. I: Regul. Pap.
71
, 2783
–2796
(2024
). 34.
Z.
Hua
, J.
Yao
, Y.
Zhang
, H.
Bao
, and S.
Yi
, “Two-dimensional coupled complex chaotic Map
,” IEEE Trans. Ind. Inf.
21
, 85
–95
(2025
). 35.
Q.
Wang
, C. Y.
Hu
, Z.
Tian
, X. M.
Wu
, H. W.
Sang
, and Z. W.
Cui
, “A 3D memristor-based chaotic system with transition behaviors of coexisting attractors between equilibrium points
,” Results Phys.
56
, 107201
(2024
). 36.
A.
Rukhin
, J.
Soto
, J.
Nechvatal
, M.
Smid
, and E.
Barker
, “A statistical test suite for random and pseudorandom number generators for cryptographic applications
,” Appl. Phys. Lett. 22
, 1
–164
(2010
).37.
P.
L'Ecuyer
and R.
Simard
, “Testu01: A C library for empirical testing of random number generators
,” ACM Trans. Math. Softw.
33
, 1
(2007
). 38.
M.
Bucolo
, A.
Buscarino
, L.
Fortuna
, and S.
Gagliano
, “Multidimensional discrete chaotic maps
,” Front. Phys.
10
, 862376
(2022
). © 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.