With specific nonlinearity, discrete memristors can form excellent chaotic systems through different coupling models. This work proposes a step-wise coupling method for constructing a mapping model. Based on second-order coupling, a novel trigonometric step-wise discrete memristive (TSDM) map is constructed by coupling a sine discrete memristor with a cosine discrete memristor. The dynamical behaviors, tuned by parameters and initial values, are investigated using various numerical methods. It is found that there is a local offset behavior of the attractor in the TSDM map, which is highly sensitive to the initial value. The TSDM map was implemented using a microcontroller, and a TSDM map-based pseudo-random number generator was designed.

1.
L. O.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
T. F.
Fozin Fonzin
,
K.
Srinivasan
,
J.
Kengne
, and
F. B.
Relap
, “
Coexisting bifurcations in a memristive hyperchaotic oscillator
,”
AEU—Int. J. Electron. Commun.
90
,
110
122
(
2018
).
3.
O.
Krestinskaya
,
K. N.
Salama
, and
A. P.
James
, “
Learning in memristive neural network architectures using analog backpropagation circuits
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
66
,
719
732
(
2019
).
4.
H.
Lin
,
C.
Wang
,
Q.
Deng
,
C.
Xu
,
Z.
Deng
, and
C.
Zhou
, “
Review on chaotic dynamics of memristive neuron and neural network
,”
Nonlinear Dyn.
106
,
959
973
(
2021
).
5.
S.
Kumar
,
X.
Wang
,
J. P.
Strachan
,
Y.
Yang
, and
W. D.
Lu
, “
Dynamical memristors for higher-complexity neuromorphic computing
,”
Nat. Rev. Mater.
7
,
575
591
(
2022
).
6.
P.
Yao
,
H.
Wu
,
B.
Gao
,
J.
Tang
,
Q.
Zhang
,
W.
Zhang
,
J. J.
Yang
, and
H.
Qian
, “
Fully hardware-implemented memristor convolutional neural network
,”
Nature
577
,
641
646
(
2020
).
7.
X.
Ma
,
J.
Mou
,
J.
Liu
,
C.
Ma
,
F.
Yang
, and
X.
Zhao
, “
A novel simple chaotic circuit based on memristor-memcapacitor
,”
Nonlinear Dyn.
100
,
2859
2876
(
2020
).
8.
R.
Yan
,
Q.
Hong
,
C.
Wang
,
J.
Sun
, and
Y.
Li
, “
Multilayer memristive neural network circuit based on online learning for license plate detection
,”
IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.
41
,
3000
3011
(
2022
).
9.
S.
He
,
D.
Zhan
,
H.
Wang
,
K.
Sun
, and
Y.
Peng
, “
Discrete memristor and discrete memristive systems
,”
Entropy
24
,
786
(
2022
).
10.
S.
He
,
K.
Sun
,
Y.
Peng
, and
L.
Wang
, “
Modeling of discrete fracmemristor and its application
,”
AIP Adv.
10
,
015332
(
2020
).
11.
J.
Ramadoss
,
A.
Ouannas
,
V. K.
Tamba
,
G.
Grassi
,
S.
Momani
, and
V. T.
Pham
, “
Constructing non-fixed-point maps with memristors
,”
Eur. Phys. J. Plus
137
,
211
(
2022
).
12.
H.
Bao
,
Z.
Hua
,
N.
Wang
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation
,”
IEEE Trans. Ind. Inf.
17
,
1132
1140
(
2021
).
13.
C.
Li
,
B.
Feng
,
S.
Li
,
J.
Kurths
, and
G.
Chen
, “
Dynamic analysis of digital chaotic maps via state-mapping networks
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
66
,
2322
2335
(
2019
).
14.
B. C.
Bao
,
H. Z.
Li
,
L.
Zhu
,
X.
Zhang
, and
M.
Chen
, “
Initial-switched boosting bifurcations in 2D hyperchaotic map
,”
Chaos
30
,
033107
(
2020
).
15.
B. C.
Bao
,
H.
Li
,
H.
Wu
,
X.
Zhang
, and
M.
Chen
, “
Hyperchaos in a second-order discrete memristor-based map model
,”
Electron. Lett.
56
,
769
770
(
2020
).
16.
H.
Li
,
Z.
Hua
,
H.
Bao
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Two-dimensional memristive hyperchaotic maps and application in secure communication
,”
IEEE Trans. Ind. Electron.
68
,
9931
9940
(
2021
).
17.
S.
Vaidyanathan
,
V. T.
Pham
, and
C.
Volos
, “
Adaptive control, synchronization and circuit simulation of a memristor-based hyperchaotic system with hidden attractors
,”
Adv. Memristors Memristive Devices Syst.
701
,
101
130
(
2017
).
18.
H.
Lin
,
C.
Wang
,
L.
Cui
,
Y.
Sun
,
C.
Xu
, and
F.
Yu
, “
Brain-like initial-boosted hyperchaos and application in biomedical image encryption
,”
IEEE Trans. Ind. Inf.
18
,
8839
8850
(
2022
).
19.
F.
Yu
,
L.
Liu
,
S.
Qian
,
L.
Li
,
Y.
Huang
,
C.
Shi
, and
Q.
Wan
, “
Chaos-based application of a novel multistable 5D memristive hyperchaotic system with coexisting multiple attractors
,”
Complexity
2020
,
8034196
(
2020
).
20.
Z.
Hua
,
Y.
Zhou
, and
B.
Bao
, “
Two-dimensional sine chaotification system with hardware implementation
,”
IEEE Trans. Ind. Inf.
16
,
887
897
(
2020
).
21.
Y.
Deng
and
Y.
Li
, “
Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map
,”
Chaos Soliton. Fract.
150
,
111064
(
2021
).
22.
H.
Bao
,
Z.
Hua
,
H.
Li
,
M.
Chen
, and
B.
Bao
, “
Discrete memristor hyperchaotic maps
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
68
,
4534
4544
(
2021
).
23.
F.
Yuan
,
G.
Xing
, and
Y.
Deng
, “
Flexible cascade and parallel operations of discrete memristor
,”
Chaos Soliton. Fract.
166
,
112888
(
2023
).
24.
S.
Zhang
,
H.
Zhang
, and
C.
Wang
, “
Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps
,”
Chaos Soliton. Fract.
174
,
113885
(
2023
).
25.
Y.
Peng
,
K.
Sun
, and
S.
He
, “
A discrete memristor model and its application in Hénon map
,”
Chaos Soliton. Fract.
137
,
109873
(
2020
).
26.
M.
Ma
,
Y.
Yang
,
Z.
Qiu
,
Y.
Peng
,
Y.
Sun
,
Z.
Li
, and
M.
Wang
, “
A locally active discrete memristor model and its application in a hyperchaotic map
,”
Nonlinear Dyn.
107
,
2935
2949
(
2022
).
27.
B.
Li
,
K.
Sun
,
H.
Wang
, and
W.
Liu
, “
The hyperbolic sine chaotification model and its applications
,”
Phys. Scr.
99
,
075274
(
2024
).
28.
J.
Ying
,
Y.
Liang
,
G.
Wang
,
H. H. C.
Lu
,
J.
Zhang
, and
P.
Jin
, “
Locally active memristor based oscillators: The dynamic route from period to chaos and hyperchaos
,”
Chaos
31
,
063114
(
2021
).
29.
S.
Zhang
,
H.
Zhang
, and
C.
Wang
, “
Dynamical analysis and applications of a novel 2-D hybrid dual-memristor hyperchaotic map with complexity enhancement
,”
Nonlinear Dyn.
111
,
15487
15513
(
2023
).
30.
Y.
Gu
,
H.
Bao
,
Q.
Xu
,
X.
Zhang
, and
B.
Bao
, “
Cascaded Bi-memristor hyperchaotic map
,”
IEEE Trans. Circuits Syst. II: Express Briefs
70
,
3109
3113
(
2023
).
31.
K.
Li
,
Q.
Wang
,
Q.
Zheng
,
X.
Yu
,
B.
Liang
, and
Z.
Tian
, “
Reducible-dimension discrete memristive chaotic map
,”
Nonlinear Dyn.
113
,
861
894
(
2025
).
32.
C.
Li
,
Y.
Jiang
,
R.
Wang
, and
Z.
Liu
, “
Periodic offset boosting for attractor self-reproducing
,”
Chaos
31
,
113108
(
2021
).
33.
Y.
Zhang
,
Z.
Hua
,
H.
Bao
, and
H.
Huang
, “
Multi-valued model for generating complex chaos and fractals
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
71
,
2783
2796
(
2024
).
34.
Z.
Hua
,
J.
Yao
,
Y.
Zhang
,
H.
Bao
, and
S.
Yi
, “
Two-dimensional coupled complex chaotic Map
,”
IEEE Trans. Ind. Inf.
21
,
85
95
(
2025
).
35.
Q.
Wang
,
C. Y.
Hu
,
Z.
Tian
,
X. M.
Wu
,
H. W.
Sang
, and
Z. W.
Cui
, “
A 3D memristor-based chaotic system with transition behaviors of coexisting attractors between equilibrium points
,”
Results Phys.
56
,
107201
(
2024
).
36.
A.
Rukhin
,
J.
Soto
,
J.
Nechvatal
,
M.
Smid
, and
E.
Barker
, “
A statistical test suite for random and pseudorandom number generators for cryptographic applications
,” Appl. Phys. Lett.
22
,
1
164
(
2010
).
37.
P.
L'Ecuyer
and
R.
Simard
, “
Testu01: A C library for empirical testing of random number generators
,”
ACM Trans. Math. Softw.
33
,
1
(
2007
).
38.
M.
Bucolo
,
A.
Buscarino
,
L.
Fortuna
, and
S.
Gagliano
, “
Multidimensional discrete chaotic maps
,”
Front. Phys.
10
,
862376
(
2022
).
You do not currently have access to this content.