In this paper, we illustrate the innovative techniques to explore the dynamical properties of the hybrid complex systems by various parameters and demonstrate the clusters under the chaotic-condensation peculiarities to accentuate the different technological challenges in the modern world. The complex dynamic characteristics of the contemplated systems are explored with interferometry techniques, which play key roles in examining the consequences of intricate features to interpreting the dynamics of an assemblage that possesses the ability to traverse along dependable tracks of particles, and thus, the solutions within the framework of quantum perturbation for partially chaotic structures are explored with substantial peculiar outcomes in the expanding active matter systems. Correlation graphs with chaotic parameters illustrate the significance of coherent stochastic generation for quasi-granular systems at finite momenta that possess sufficient fractions of instability fluxes. The distribution of temperature profiles is demonstrated by employing specific techniques to account for the different asymmetries and distinct formulas that characterize the structure of the dynamical system using realistic interference methods. The analytical solution contained distinctive information about the response of chaotic and probabilistic droplets within the multiplicities throughout hot and cold particulates, which are triggered by an influenced time crossover phase that occurs continually under the emissions of various sources that proliferate. Our results indicate that the newly developed phase encompasses the partially coherent collection of active matter with the temperature, which probes the rapidity of its transformation, and such phases exhibit significant mutual relationships. The findings accentuate the significance of contemplating correlations and bestowing extraordinary farsightedness about the meticulous manifestation of complex systems. The current methods are unique in obtaining new forms of solutions that appear beneficial for researchers to further understand nonlinear dynamical problems. The acquired techniques are also applicable to examine the solutions of other types of chaotic systems with mathematical analysis through machine learning.

1.
R. L.
Bagley
and
P. L.
Torvik
,
J. Rheol.
30
,
133
155
(
1986
).
2.
M. A.
González-Olvera
and
Y.
Tang
,
Chaos Solitons Fractals
117
,
255
263
(
2018
).
3.
M. A.
Wasay
,
M. L.
Lyra
, and
B. S.
Ham
,
Sci. Rep.
9
,
1871
(
2019
).
4.
A. A.
Khennaoui
,
A.
Ouannas
, and
Z.
Odibat
,
Int. J. Bifurcation Chaos
30
,
2050217
(
2020
).
5.
G.
Diaz
and
C. F. M.
Coimbra
,
Nonlinear Dyn.
56
,
145
157
(
2009
).
6.
F.
Gori
and
M.
Santarsiero
,
Opt. Lett.
43
,
595
598
(
2018
).
7.
M.
Gyulassy
,
S. K.
Kauffmann
, and
L. W.
Wilson
,
Phys. Rev. C
20
,
2267
(
1979
).
8.
U. A.
Wiedemann
and
U. W.
Heinz
,
Phys. Rep.
319
,
145
(
1999
).
9.
M. M.
Aggarwal
et al.,
Phys. Rev. C
67
,
014906
(
2003
).
10.
D.
Gangadharan
,
Phys. Rev. C
92
,
014902
(
2015
).
11.
T.
Lappi
,
A.
Dumitru
, and
Y.
Nara
,
Nucl. Phys. A
931
,
354
358
(
2014
).
12.
L.
McLerran
,
Acta Phys. Pol. Suppl.
10
,
663
(
2017
).
13.
W.
Ketterle
,
Phys. Today
52
(
12
),
30
35
(
1999
).
14.
G.
Bary
,
P.
Ru
, and
W. N.
Zhang
,
J. Phys. G
45
,
065102
(
2018
).
15.
T.
Csorgo
,
Acta Phys. Hung. A
15
,
203
257
(
2002
).
16.
B. L.
Friman
,
K.
Kajantie
, and
P. V.
Ruuskanen
,
Nucl. Phys. B
266
,
468
486
(
1986
).
17.
M.
Gyulassy
,
K.
Kajantie
, and
L. D.
McLerran
,
Nucl. Phys. B
237
,
477
501
(
1984
).
18.
19.
B. B.
Abelev
et al.,
Phys. Rev. C
89
,
024911
(
2014
).
20.
J.
Adam
et al.,
Phys. Rev. C
93
,
024917
(
2016
).
21.
U. W.
Heinz
and
Q. H.
Zhang
,
Phys. Rev. C
56
,
426
(
1997
).
22.
U.
Ornik
,
M.
Plumer
, and
D.
Strottmann
,
Phys. Lett. B
314
,
401
407
(
1993
).
23.
J. P.
Blaizot
,
F.
Gelis
, and
J. F.
Liao
,
Nucl. Phys. A
873
,
68
80
(
2012
).
24.
J. P.
Blaizot
,
F.
Gelis
, and
J.
Liao
,
Nucl. Phys. A
904–905
,
68
80
(
2013
).
26.
G.
Bary
,
Chaos Solitons Fractals
164
,
112572
(
2022
).
27.
G.
Goldhaber
,
S.
Goldhaber
,
W. Y.
Lee
, and
A.
Pais
,
Phys. Rev.
120
,
300
(
1960
).
28.
I. V.
Andreev
,
M.
Plumer
, and
R. M.
Weiner
,
Int. J. Mod. Phys. A
8
,
61
(
1993
).
29.
30.
32.
P.
Ru
,
G.
Bary
, and
W.
Zhang
,
Phys. Lett. B
777
,
79
85
(
2018
).
33.
S.
Pratt
,
P. J.
Siemens
, and
A. P.
Vischer
,
Phys. Rev. Lett.
68
,
1109
(
1992
).
34.
F.
Dalfovo
,
S.
Giorgini
, and
L. P.
Pitaevskii
,
Rev. Mod. Phys.
71
,
463
(
1999
).
35.
W. N.
Zhang
,
Y. M.
Liu
, and
L.
Huo
,
Phys. Rev. C
51
,
922
(
1995
).
36.
Y.
Karaca
,
M.
Moonis
, and
D.
Baleanu
,
Chaos Solitons Fractals
136
,
109820
(
2020
).
37.
S.
Dong
,
G. E.
Karniadakis
, and
C.
Chryssostomidis
,
J. Comput. Phys.
261
,
83
105
(
2014
).
38.
R.
Ahmad
and
H.
Alotaibi
,
Res. Phys.
21
,
103756
(
2021
).
39.
W. N.
Zhang
,
M. J.
Efaaf
, and
C. Y.
Wong
,
Phys. Rev. C
70
,
024903
(
2004
).
40.
G.
Bary
,
M.
Imran
, and
M.
Arslan
,
J. Saudi Chem. Soc.
20
,
101260
(
2021
).
41.
R.
Ahmad
,
F.
Rashida
, and
G.
Bary
,
Complexity
2021
,
11
.
42.
A.
Sohail
and
Y.
Zhang
,
Int. J. Theor. Phys.
57
,
2814
2827
(
2018
).
43.
C. Y.
Wong
and
W. N.
Zhang
,
Phys. Rev. C
76
,
034905
(
2007
).
44.
Y.
Karaca
and
B.
Dumitru
,
Fractals
28
,
2040032
(
2000
).
45.
M.
Naraschewski
and
R. J.
Glauber
,
Phys. Rev. A
59
,
4595
(
1999
).
46.
R.
Ahmad
,
A.
Farooqi
, and
G.
Bary
,
Fractals
30
,
240171
(
2022
).
47.
G.
Bary
,
L.
Ghani
, and
M. I.
Jamil
,
Sci. Rep.
11
,
19683
(
2021
).
48.
S.-Y.
Wang
and
W. N.
Zhang
,
Front. Phys.
10
,
835592
(
2022
).
49.
F.
Gori
and
M.
Santarsiero
,
Opt. Lett.
43
,
595
598
(
2018
).
50.
M. S.
Anwar
et al.,
J. Appl. Math.
80
,
1375
1386
(
2020
).
51.
E.
Lazpita
et al.,
Phys. Fluids
34
,
051702
(
2022
).
52.
B.
Shiri
,
Z.
Alijani
, and
Y.
Karaca
,
Fractals
31
,
2340086
(
2023
).
You do not currently have access to this content.