This work explores the relationship between state space methods and Koopman operator-based methods for predicting the time evolution of nonlinear dynamical systems. We demonstrate that extended dynamic mode decomposition with dictionary learning (EDMD-DL), when combined with a state space projection, is equivalent to a neural network representation of the nonlinear discrete-time flow map on the state space. We highlight how this projection step introduces nonlinearity into the evolution equations, enabling significantly improved EDMD-DL predictions. With this projection, EDMD-DL leads to a nonlinear dynamical system on the state space, which can be represented in either discrete or continuous time. This system has a natural structure for neural networks, where the state is first expanded into a high-dimensional feature space followed by linear mapping that represents the discrete-time map or the vector field as a linear combination of these features. Inspired by these observations, we implement several variations of neural ordinary differential equations (ODEs) and EDMD-DL, developed by combining different aspects of their respective model structures and training procedures. We evaluate these methods using numerical experiments on chaotic dynamics in the Lorenz system and a nine-mode model of turbulent shear flow, showing comparable performance across methods in terms of short-time trajectory prediction, reconstruction of long-time statistics, and prediction of rare events. These results highlight the equivalence of the EDMD-DL implementation with a state space projection to a neural ODE representation of the dynamics. We also show that these methods provide comparable performance to a non-Markovian approach in terms of the prediction of extreme events.

1
R. T. Q.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D. K.
Duvenaud
, “Neural ordinary differential equations,” in Advances in Neural Information Processing Systems (Curran Associates, Inc., 2018), Vol. 31.
2
Q.
Li
,
F.
Dietrich
,
E. M.
Bollt
, and
I. G.
Kevrekidis
, “
Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
,”
Chaos
27
,
103111
(
2017
).
3
M.
Budišić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
4
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
5
S. L.
Brunton
,
M.
Budišić
,
E.
Kaiser
, and
J. N.
Kutz
, “
Modern Koopman theory for dynamical systems
,”
SIAM Rev.
64
,
229
340
(
2022
).
6
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
325
(
2005
).
7
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
8
S. E.
Otto
and
C. W.
Rowley
, “
Koopman operators for estimation and control of dynamical systems
,”
Annu. Rev. Control Rob. Autonom. Syst.
4
,
59
87
(
2021
).
9
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
10
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
11
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
,”
PLoS One
11
,
e0150171
(
2016
).
12
Z.
Wu
,
S. L.
Brunton
, and
S.
Revzen
, “
Challenges in dynamic mode decomposition
,”
J. Roy. Soc. Interface
18
,
20210686
(
2021
).
13
M. J.
Colbrook
, “The multiverse of dynamic mode decomposition algorithms,” arxiv:2312.00137 (2023).
14
M. O.
Williams
,
I. G.
Kevrekidis
, and
C. W.
Rowley
, “
A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition
,”
J. Nonlinear Sci.
25
,
1307
1346
(
2015
).
15
A. J.
Fox
,
C.
Ricardo Constante-Amores
, and
M. D.
Graham
, “
Predicting extreme events in a data-driven model of turbulent shear flow using an atlas of charts
,”
Phys. Rev. Fluids
8
,
094401
(
2023
).
16
C. R.
Constante-Amores
,
A. J.
Linot
, and
M. D.
Graham
, “
Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches
,”
Chaos
34
,
043119
(
2024
).
17
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
,
4950
(
2018
).
18
S. E.
Otto
and
C. W.
Rowley
, “
Linearly recurrent autoencoder networks for learning dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
,
558
593
(
2019
).
19
P. J.
Baddoo
,
B.
Herrmann
,
B. J.
McKeon
, and
S. L.
Brunton
, “
Kernel learning for robust dynamic mode decomposition: Linear and nonlinear disambiguation optimization
,”
Proc. R. Soc. A
478
,
20210830
(
2022
).
20
H.
Eivazi
,
L.
Guastoni
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
,”
Int. J. Heat Fluid Flow
90
,
108816
(
2021
).
21
A.
Junker
,
J.
Timmermann
, and
A.
Trächtler
, “Data-driven models for control engineering applications using the Koopman operator,” in 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC) (IEEE, 2022), pp. 1–9.
22
P.
Van Goor
,
R.
Mahony
,
M.
Schaller
, and
K.
Worthmann
, “Reprojection methods for Koopman-based modelling and prediction,” in 2023 62nd IEEE Conference on Decision and Control (CDC) (IEEE, 2023), pp. 315–321, ISSN: 2576-2370.
23
G.
Nehma
and
M.
Tiwari
, “Leveraging KANs for enhanced deep Koopman operator discovery,” arxiv:2406.02875 (2024).
24
R.
Rico-Martinez
,
K.
Krischer
,
I.
Kevrekidis
,
M.
Kube
, and
J.
Hudson
, “
Discrete- vs. continuous-time nonlinear signal processing of Cu electrodissolution data
,”
Chem. Eng. Commun.
118
,
25
48
(
1992
).
25
R.
Rico-Martinez
,
J.
Anderson
, and
I.
Kevrekidis
, “Continuous-time nonlinear signal processing: A neural network based approach for gray box identification,” in Proceedings of IEEE Workshop on Neural Networks for Signal Processing (IEEE, 1994), pp. 596–605.
26
R.
Rico-Martinez
and
I.
Kevrekidis
, “Continuous time modeling of nonlinear systems: A neural network-based approach,” in IEEE International Conference on Neural Networks (IEEE, 1993), Vol. 3, pp. 1522–1525.
27
S. R.
Chu
and
R.
Shoureshi
, “A neural network approach for identification of continuous-time nonlinear dynamic systems,” in 1991 American Control Conference (IEEE, 1991), pp. 1–5.
28
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3932
3937
(
2016
).
29
B. O.
Koopman
, “
Hamiltonian systems and transformation in Hilbert space
,”
Proc. Natl. Acad. Sci. U.S.A.
17
,
315
318
(
1931
).
30
A.
Lasota
and
M. C.
Mackey
, in Chaos, Fractals, and Noise, edited by J. E. Marsden and L. Sirovich, Applied Mathematical Sciences Vol. 97 (Springer, New York, NY, 1994).
31
R.
Abraham
,
J. E.
Marsden
, and
T.
Ratiu
,
Manifolds, Tensor Analysis, and Applications
(
Springer Science & Business Media
,
2012
), Vol. 75.
32
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
(
Niels Bohr Inst.
,
Copenhagen
,
2016
).
33
A.
Mauroy
and
J.
Goncalves
, “
Koopman-based lifting techniques for nonlinear systems identification
,”
IEEE Trans. Autom. Control
65
,
2550
2565
(
2020
).
34
S.
Klus
,
P.
Koltai
, and
C.
Schütte
, “
On the numerical approximation of the Perron-Frobenius and Koopman operator
,”
J. Comput. Dyn.
3
,
51
79
(
2016
).
35
M.
Korda
and
I.
Mezić
, “
On convergence of extended dynamic mode decomposition to the Koopman operator
,”
J. Nonlinear Sci.
28
,
687
710
(
2018
).
36
C. D.
Young
and
M. D.
Graham
, “
Deep learning delay coordinate dynamics for chaotic attractors from partial observable data
,”
Phys. Rev. E
107
,
034215
(
2023
).
37
P.
Kidger
,
J.
Morrill
,
J.
Foster
, and
T.
Lyons
, “Neural controlled differential equations for irregular time series,” in Advances in Neural Information Processing Systems (Curran Associates, Inc., 2020), Vol. 33, pp. 6696–6707.
38
P.
Kidger
, “On neural differential equations,” Ph.D. thesis (University of Oxford, 2021), arxiv:2202.02435.
39
C.
Finlay
,
J.-H.
Jacobsen
,
L.
Nurbekyan
, and
A.
Oberman
, “How to train your neural ODE: The World of Jacobian and kinetic regularization,” in Proceedings of the 37th International Conference on Machine Learning (PMLR, 2020), pp. 3154–3164, ISSN: 2640-3498.
40
J.
Kelly
,
J.
Bettencourt
,
M. J.
Johnson
, and
D. K.
Duvenaud
, “Learning differential equations that are easy to solve,” in Advances in Neural Information Processing Systems (Curran Associates, Inc., 2020), Vol. 33, pp. 4370–4380.
41
A. J.
Linot
and
M. D.
Graham
, “
Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations
,”
Chaos
32
,
073110
(
2022
).
42
R. T. Q.
Chen
, “torchdiffeq” (2018), see https://github.com/rtqichen/torchdiffeq.
43
J.
Ansel
,
E.
Yang
,
H.
He
,
N.
Gimelshein
,
A.
Jain
,
M.
Voznesensky
,
B.
Bao
,
P.
Bell
,
D.
Berard
,
E.
Burovski
,
G.
Chauhan
,
A.
Chourdia
,
W.
Constable
,
A.
Desmaison
,
Z.
DeVito
,
E.
Ellison
,
W.
Feng
,
J.
Gong
,
M.
Gschwind
,
B.
Hirsh
,
S.
Huang
,
K.
Kalambarkar
,
L.
Kirsch
,
M.
Lazos
,
M.
Lezcano
,
Y.
Liang
,
J.
Liang
,
Y.
Lu
,
C.
Luk
,
B.
Maher
,
Y.
Pan
,
C.
Puhrsch
,
M.
Reso
,
M.
Saroufim
,
M. Y.
Siraichi
,
H.
Suk
,
M.
Suo
,
P.
Tillet
,
E.
Wang
,
X.
Wang
,
W.
Wen
,
S.
Zhang
,
X.
Zhao
,
K.
Zhou
,
R.
Zou
,
A.
Mathews
,
G.
Chanan
,
P.
Wu
, and
S.
Chintala
, “PyTorch 2: Faster machine learning through dynamic Python Bytecode transformation and graph compilation,” in 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24) (ACM, 2024).
44
C.
Folkestad
,
S. X.
Wei
, and
J. W.
Burdick
, “KoopNet: Joint learning of Koopman bilinear models and function dictionaries with application to quadrotor trajectory tracking,” in 2022 International Conference on Robotics and Automation (ICRA) (IEEE, 2022), pp. 1344–1350.
45
M.
Korda
and
I.
Mezić
, “
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
,”
Automatica
93
,
149
160
(
2018
).
46
C. R.
Constante-Amores
,
A. J.
Fox
,
C. E. P.
De Jesús
, and
M. D.
Graham
, “Data-driven Koopman operator predictions of turbulent dynamics in models of shear flows,” arxiv:2407.16542 [physics] (2024).
47
A.
Mauroy
and
J.
Goncalves
, “Linear identification of nonlinear systems: A lifting technique based on the Koopman operator,” in 2016 IEEE 55th Conference on Decision and Control (CDC) (IEEE, 2016), pp. 6500–6505.
48
S.
Klus
,
F.
Nüske
,
S.
Peitz
,
J.-H.
Niemann
,
C.
Clementi
, and
C.
Schütte
, “
Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
,”
Physica D
406
,
132416
(
2020
).
49
S.
Peitz
,
S. E.
Otto
, and
C. W.
Rowley
, “
Data-driven model predictive control using interpolated Koopman generators
,”
SIAM J. Appl. Dyn. Syst.
19
,
2162
2193
(
2020
).
50
Y.
Guo
,
M.
Schaller
,
K.
Worthmann
, and
S.
Streif
, “Modularized data-driven approximation of the Koopman operator and generator,” arxiv:2408.12277 (2024).
51
A.
Racca
and
L.
Magri
, “
Data-driven prediction and control of extreme events in a chaotic flow
,”
Phys. Rev. Fluids
7
,
104402
(
2022
).
52
C. E.
Pérez De Jesús
and
M. D.
Graham
, “
Data-driven low-dimensional dynamic model of Kolmogorov flow
,”
Phys. Rev. Fluids
8
,
044402
(
2023
).
53
A. J.
Linot
and
M. D.
Graham
, “
Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow
,”
J. Fluid Mech.
973
,
A42
(
2023
).
54
C. R.
Constante-Amores
,
A. J.
Linot
, and
M. D.
Graham
, “Dynamics of a data-driven low-dimensional model of turbulent minimal pipe flow,” arxiv:2408.03135 (2024).
55
C. R.
Constante-Amores
and
M. D.
Graham
, “
Data-driven state-space and Koopman operator models of coherent state dynamics on invariant manifolds
,”
J. Fluid Mech.
984
,
R9
(
2024
).
56
J.
Moehlis
,
H.
Faisst
, and
B.
Eckhardt
, “
A low-dimensional model for turbulent shear flows
,”
New J. Phys.
6
,
56
(
2004
).
57
J.
Moehlis
,
H.
Faisst
, and
B.
Eckhardt
, “
Periodic orbits and chaotic sets in a low-dimensional model for shear flows
,”
SIAM J. Appl. Dyn. Syst.
4
,
352
376
(
2005
).
58
D.
Hendrycks
and
K.
Gimpel
, “Gaussian error linear units (GELUs),” arXiv:1606.08415 (2016).
59
D.
Viswanath
,
Lyapunov Exponents from Random Fibonacci Sequences to the Lorenz Equations
(
Cornell University
,
1998
).
60
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of Koopman eigenfunctions for control
,”
Mach. Learn.: Sci. Technol.
2
,
035023
(
2021
).
61
J.
Page
and
R. R.
Kerswell
, “
Koopman mode expansions between simple invariant solutions
,”
J. Fluid Mech.
879
,
1
27
(
2019
).
62
M.
Cenedese
,
J.
Axås
,
B.
Bäuerlein
,
K.
Avila
, and
G.
Haller
, “
Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
,”
Nat. Commun.
13
,
872
(
2022
).
63
G.
Haller
and
B.
Kaszás
, “
Data-driven linearization of dynamical systems
,”
Nonlinear Dyn.
112
,
18639
18663
(
2024
).
64
P. A.
Srinivasan
,
L.
Guastoni
,
H.
Azizpour
,
P.
Schlatter
, and
R.
Vinuesa
, “
Predictions of turbulent shear flows using deep neural networks
,”
Phys. Rev. Fluids
4
,
054603
(
2019
).
65
G.
Peyré
and
M.
Cuturi
, “
Computational optimal transport: With applications to data science
,”
Found. Trends® Mach. Learn.
11
,
355
607
(
2019
).
66
R.
Flamary
,
N.
Courty
,
A.
Gramfort
,
M. Z.
Alaya
,
A.
Boisbunon
,
S.
Chambon
,
L.
Chapel
,
A.
Corenflos
,
K.
Fatras
,
N.
Fournier
,
L.
Gautheron
,
N. T.
Gayraud
,
H.
Janati
,
A.
Rakotomamonjy
,
I.
Redko
,
A.
Rolet
,
A.
Schutz
,
V.
Seguy
,
D. J.
Sutherland
,
R.
Tavenard
,
A.
Tong
, and
T.
Vayer
, “
Pot: Python optimal transport
,”
J. Mach. Learn. Res.
22
,
1
8
(
2021
).
You do not currently have access to this content.