This paper proposes a novel fast online methodology for outlier detection called the exception maximization outlier detection (EMOD) algorithm, which employs probabilistic models and statistical algorithms to detect abnormal patterns from the outputs of complex systems. The EMOD is based on a two-state Gaussian mixture model and demonstrates strong performance in probability anomaly detection working on real-time raw data rather than using special prior distribution information. We confirm this using the synthetic data from two numerical cases. For the real-world data, we have detected the short-circuit pattern of the circuit system using EMOD by the current and voltage output of a three-phase inverter. The EMOD also found an abnormal period due to COVID-19 in the insured unemployment data of 53 regions in the United States from 2000 to 2024. The application of EMOD to these two real-life datasets demonstrated the effectiveness and accuracy of our algorithm.

1.
C.
Xu
,
S.
Zhao
, and
F.
Liu
, “
Sensor fault detection and diagnosis in the presence of outliers
,”
Neurocomputing
349
,
156
163
(
2019
).
2.
M. G.
Don
and
F.
Khan
, “
Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and Bayesian network model
,”
Chem. Eng. Sci.
201
,
82
96
(
2019
).
3.
M.
Ammiche
,
A.
Kouadri
, and
A.
Bakdi
, “
A combined monitoring scheme with fuzzy logic filter for plant-wide Tennessee Eastman process fault detection
,”
Chem. Eng. Sci.
187
,
269
279
(
2018
).
4.
B.
Brumback
and
M.
Srinath
, “
A chi-square test for fault-detection in Kalman filters
,”
IEEE Trans. Autom. Control
32
(
6
),
552
554
(
1987
).
5.
J.
Xiong
,
X.-H.
Chang
, and
X.
Yi
, “
Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization
,”
Appl. Math. Comput.
338
,
774
788
(
2018
).
6.
L.
An
and
N.
Sepehri
, “
Hydraulic actuator leakage fault detection using extended Kalman filter
,”
Int. J. Fluid Power
6
(
1
),
41
51
(
2005
).
7.
S.
Yin
and
X.
Zhu
, “
Intelligent particle filter and its application to fault detection of nonlinear system
,”
IEEE Trans. Ind. Electron.
62
(
6
),
3852
3861
(
2015
).
8.
A.
Stuart
and
K.
Zygalakis
, “Data assimilation: A mathematical introduction,” Tech. Rep., Oak Ridge National Lab. (ORNL), Oak Ridge, TN (2015).
9.
Ž.
Kanović
,
M. R.
Rapaić
, and
Z. D.
Jeličić
, “
Generalized particle swarm optimization algorithm-theoretical and empirical analysis with application in fault detection
,”
Appl. Math. Comput.
217
(
24
),
10175
10186
(
2011
).
10.
N.
Cartocci
,
M. R.
Napolitano
,
G.
Costante
,
P.
Valigi
, and
M. L.
Fravolini
, “
Aircraft robust data-driven multiple sensor fault diagnosis based on optimality criteria
,”
Mech. Syst. Signal Process.
170
,
108668
(
2022
).
11.
Q.-Y.
Fan
,
D.
Wang
, and
B.
Xu
, “
h codesign for uncertain nonlinear control systems based on policy iteration method
,”
IEEE Trans. Cybernet.
52
(
10
),
10101
10110
(
2021
).
12.
J.
Li
,
K.
Pan
, and
Q.
Su
, “
Sensor fault detection and estimation for switched power electronics systems based on sliding mode observer
,”
Appl. Math. Comput.
353
,
282
294
(
2019
).
13.
N.-N.
Zhao
,
L.-B.
Wu
,
X.-Y.
Ouyang
,
Y.
Yan
, and
R.-Y.
Zhang
, “
Finite-time adaptive fuzzy tracking control for nonlinear systems with disturbances and dead-zone nonlinearities
,”
Appl. Math. Comput.
362
,
124494
(
2019
).
14.
S.
Wang
and
J.
Cui
, “
A robust fault detection and diagnosis strategy for centrifugal chillers
,”
HVAC&R Res.
12
(
3
),
407
428
(
2006
).
15.
M.
Kano
and
Y.
Nakagawa
, “
Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
,”
Comput. Chem. Eng.
32
(
1–2
),
12
24
(
2008
).
16.
W.-x.
Su
,
Y.-l.
Zhu
,
F.
Liu
, and
K.-y.
Hu
, “
On-line outlier and change point detection for time series
,”
J. Central South Univ.
20
(
1
),
114
122
(
2013
).
17.
S.
Frühwirth-Schnatter
and
S.
Frèuhwirth-Schnatter
,
Finite Mixture and Markov Switching Models
(
Springer
,
2006
), Vol. 425.
18.
U.
Khalid
,
A.
Mastrandrea
, and
M.
Olivieri
, “Novel approaches to quantify failure probability due to process variations in nano-scale CMOS logic,” in 2014 29th International Conference on Microelectronics Proceedings-MIEL 2014 (IEEE, 2014), pp. 371–374.
19.
A.
Belloni
and
V.
Chernozhukov
, “
On the computational complexity of MCMC-based estimators in large samples
,”
Ann. Stat.
37
(
4
),
2011
2055
(
2009
).
20.
Z.
Zhang
,
Q.
Shen
, and
X.
Wang
, “
Parameter identification framework of nonlinear dynamical systems with Markovian switching
,”
Chaos
33
(
12
),
123117
(
2023
).
21.
R. P.
Sallen
and
E. L.
Key
, “
A practical method of designing RC active filters
,”
IRE Trans. Circuit Theory
2
(
1
),
74
85
(
1955
).
22.
F.
Aminian
,
M.
Aminian
, and
H.
Collins
, “
Analog fault diagnosis of actual circuits using neural networks
,”
IEEE Trans. Instrum. Meas.
51
(
3
),
544
550
(
2002
).
23.
G.
Xu-sheng
,
G.
Wen-ming
,
D.
Zhe
, and
L.
Wei-dong
, “
Research on WNN soft fault diagnosis for analog circuit based on adaptive UKF algorithm
,”
Appl. Soft Comput.
50
,
252
259
(
2017
).
24.
S.
Srinivasan
,
V.
Diep
,
B.
Behin-Aein
,
A.
Sarkar
, and
S.
Datta
, “Modeling multi-magnet networks interacting via spin currents,” arXiv:1304.0742 (2013).
25.
L.
Lu
,
J.
Li
,
H. S.
Kwok
, and
M.
Wong
, “High-performance and reliable elevated-metal metal-oxide thin-film transistor for high-resolution displays,” in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2016).
26.
J. J.
Nowak
,
R. P.
Robertazzi
,
J. Z.
Sun
,
G.
Hu
,
J.-H.
Park
,
J.
Lee
,
A. J.
Annunziata
,
G. P.
Lauer
,
R.
Kothandaraman
,
E. J.
O’Sullivan
et al., “
Dependence of voltage and size on write error rates in spin-transfer torque magnetic random-access memory
,”
IEEE Magn. Lett.
7
,
1
4
(
2016
).
27.
X.
Pei
and
Y.
Kang
, “
Short-circuit fault protection strategy for high-power three-phase three-wire inverter
,”
IEEE Trans. Ind. Inf.
8
(
3
),
545
553
(
2012
).
28.
M. P.
Niemira
and
P. A.
Klein
,
Forecasting Financial and Economic Cycles
(
John Wiley & Sons
,
1994
), Vol. 49.
29.
S.
Fujita
et al., “
Economic effects of the unemployment insurance benefit
,”
Federal Reserve Bank of Philadelphia Business Review
4
,
20
27
(
2010
). See https://ideas.repec.org/a/fip/fedpbr/y2010iq4p20-27.html
30.
J. W.
Wisnowski
,
D. C.
Montgomery
, and
J. R.
Simpson
, “
A comparative analysis of multiple outlier detection procedures in the linear regression model
,”
Comput. Stat. Data Anal.
36
(
3
),
351
382
(
2001
).
31.
L. J.
Latecki
,
A.
Lazarevic
, and
D.
Pokrajac
, “Outlier detection with kernel density functions,” in International Workshop on Machine Learning and Data Mining in Pattern Recognition (Springer, 2007), pp. 61–75.
32.
Y.
Chen
,
D.
Miao
, and
H.
Zhang
, “
Neighborhood outlier detection
,”
Expert Syst. Appl.
37
(
12
),
8745
8749
(
2010
).
33.
M. M.
Breunig
,
H.-P.
Kriegel
,
R. T.
Ng
, and
J.
Sander
, “LOF: identifying density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (Association for Computing Machinery, New York, 2000), pp. 93–104.
34.
S.
Chawla
and
A.
Gionis
, “k-means–: A unified approach to clustering and outlier detection,” in Proceedings of the 2013 SIAM International Conference on Data Mining (SIAM, 2013), pp. 189–197.
35.
F. T.
Liu
,
K. M.
Ting
, and
Z.-H.
Zhou
, “Isolation forest,” in 2008 Eighth IEEE International Conference on Data Mining (IEEE, 2008), pp. 413–422.
36.
N.
Davari
and
A. P.
Aguiar
, “
Real-time outlier detection applied to a doppler velocity log sensor based on hybrid autoencoder and recurrent neural network
,”
IEEE J. Ocean. Eng.
46
(
4
),
1288
1301
(
2021
).
37.
J.-H.
Oh
,
J. Y.
Hong
, and
J.-G.
Baek
, “
Oversampling method using outlier detectable generative adversarial network
,”
Expert Syst. Appl.
133
,
1
8
(
2019
).
You do not currently have access to this content.