The discrete memristive chaotic system is characterized by discontinuous phase trajectories. To address the limitations of the ideal integer-order discrete memristor model, which fails to accurately reflect the characteristics of practical devices, this study introduces a Grunwald–Letnikov type quadratic trivariate fractional discrete memristor model to enhance the nonlinearity and memory properties of memristors. Simultaneously, it is demonstrated that our model satisfies the essential characteristics of the generalized memristor. Based on this newly proposed fractional discrete memristor, a new four-dimensional fractional discrete memristive hyperchaotic system is constructed by coupling non-uniform, incommensurate-order memristors. This system advances the structure of existing discrete chaotic systems and provides a more flexible strategy for optimizing memory effects. The dynamical behaviors are analyzed using attractor phase diagrams, bifurcation diagrams, Lyapunov exponent spectra, and permutation entropy complexity. Numerical simulation results show that the system can exhibit a larger hyperchaotic region, higher complexity, and rich multistable behaviors, such as the coexistence of infinitely symmetric attractors and enhanced offset. Additionally, the impact of the incommensurate-order parameter on the system’s chaotic behavior is revealed, with order serving as a tunable control variable that dynamically reconfigures bifurcation paths as needed, thereby enabling transitions between hyperchaotic, chaotic, and non-chaotic states. Furthermore, a simulation circuit was designed to validate the numerical simulation results.

1.
L.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
R.
Jing-Ya
,
S.
Ke-Hui
, and
M.
Jun
, “
Memristor-based Lorenz hyper-chaotic system and its circuit implementation
,”
Acta Phys. Sin.
65
,
190502
(
2016
).
3.
W.
Wei
,
Z.
Yi-Cheng
, and
S.
Rui-Ting
, “
Research on a six-order chaotic circuit with three memristors
,”
Acta Phys. Sin.
66
,
040502
(
2017
).
4.
N. R.
Babu
,
P.
Balasubramaniam
, and
E. M.
Joo
, “
Video encryption via synchronization of a fractional order T-S fuzzy memristive hyperchaotic system
,”
Multimedia Tools Appl.
83
,
26055
26088
(
2024
).
5.
X.
Kong
,
F.
Yu
,
W.
Yao
,
S.
Cai
,
J.
Zhang
, and
H.
Lin
, “
Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation
,”
Neural Networks
171
,
85
103
(
2024
).
6.
Y.
Xu
,
J.
Huang
,
S.
Lenci
,
A.
Luo
et al., “
Constructed complex motions and chaos
,”
Chaos
33
,
050401
(
2023
).
7.
F.
Mesdoui
,
N.
Shawagfeh
,
A.
Ouannas
et al., “
Synchronization methods for chaotic systems involving fractional derivative with a non-singular kernel
,”
J. Appl. Nonlinear Dyn.
11
,
375
386
(
2022
).
8.
F.
Corinto
and
M.
Forti
, “
Memristor circuits: Bifurcations without parameters
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
64
,
1540
1551
(
2017
).
9.
Z.
Zeng
,
J.
Wang
, and
X.
Liao
, “
Global exponential stability of a general class of recurrent neural networks with time-varying delays
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
50
,
1353
1358
(
2003
).
10.
F.
Cai
,
S.
Kumar
,
T.
Van Vaerenbergh
,
X.
Sheng
,
R.
Liu
,
C.
Li
,
Z.
Liu
,
M.
Foltin
,
S.
Yu
,
Q.
Xia
et al., “
Power-efficient combinatorial optimization using intrinsic noise in memristor hopfield neural networks
,”
Nat. Electron.
3
,
409
418
(
2020
).
11.
V.
Patidar
,
N.
Pareek
,
G.
Purohit
, and
K.
Sud
, “
A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption
,”
Opt. Commun.
284
,
4331
4339
(
2011
).
12.
J.
Liu
,
X.
Zhang
,
Q.
Zhao
,
J.
Lian
,
F.
Huang
, and
Y.
Ma
, “
A torus-chaotic system and its pseudorandom properties
,”
Complexity
2020
,
8315658
(
2020
).
13.
C.
Wang
,
L.
Xiong
,
J.
Sun
, and
W.
Yao
, “
Memristor-based neural networks with weight simultaneous perturbation training
,”
Nonlinear Dyn.
95
,
2893
2906
(
2019
).
14.
S.
Duan
,
X.
Hu
,
Z.
Dong
,
L.
Wang
, and
P.
Mazumder
, “
Memristor-based cellular nonlinear/neural network: Design, analysis, and applications
,”
IEEE Trans. Neural Networks Learn. Syst.
26
,
1202
1213
(
2014
).
15.
C.
Li
,
G.
Luo
,
K.
Qin
, and
C.
Li
, “
An image encryption scheme based on chaotic tent map
,”
Nonlinear Dyn.
87
,
127
133
(
2017
).
16.
K.
Rajagopal
,
S.
Kacar
,
Z.
Wei
,
P.
Duraisamy
,
T.
Kifle
, and
A.
Karthikeyan
, “
Dynamical investigation and chaotic associated behaviors of memristor Chua’s circuit with a non-ideal voltage-controlled memristor and its application to voice encryption
,”
AEU Int. J. Electron. Commun.
107
,
183
191
(
2019
).
17.
F.
Chen
,
Z.
Ding
,
Z.
Lu
, and
X.
Zeng
, “
Parameters identification for chaotic systems based on a modified Jaya algorithm
,”
Nonlinear Dyn.
94
,
2307
2326
(
2018
).
18.
Y.
Peng
,
K.
Sun
,
S.
He
, and
X.
Yang
, “
Parameter estimation of a complex chaotic system with unknown initial values
,”
Eur. Phys. J. Plus
133
,
1
13
(
2018
).
19.
A. A.
Al-Barakati
,
F.
Mesdoui
,
S.
Bekiros
,
S.
Kaçar
, and
H.
Jahanshahi
, “
A variable-order fractional memristor neural network: Secure image encryption and synchronization via a smooth and robust control approach
,”
Chaos, Solitons Fractals
186
,
115135
(
2024
).
20.
H.
Bao
,
Z.
Hua
,
N.
Wang
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Initials-boosted coexisting chaos in a 2D sine map and its hardware implementation
,”
IEEE Trans. Ind. Inf.
17
,
1132
1140
(
2020
).
21.
C.
Li
,
B.
Feng
,
S.
Li
,
J.
Kurths
, and
G.
Chen
, “
Dynamic analysis of digital chaotic maps via state-mapping networks
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
66
,
2322
2335
(
2019
).
22.
L.
Huang
,
J.
Liu
,
J.
Xiang
,
Z.
Zhang
, and
X.
Du
, “
A construction method of n-dimensional non-degenerate discrete memristive hyperchaotic map
,”
Chaos, Solitons Fractals
160
,
112248
(
2022
).
23.
F.
Long-Xiang
,
H.
Shao-Bo
,
W.
Hui-Hai
, and
S.
Ke-Hui
, “
Simulink modeling and dynamic characteristics of discrete memristor chaotic system
,”
Acta Phys. Sin.
71
,
030501
(
2022
).
24.
Q.
Lai
,
L.
Yang
, and
Y.
Liu
, “
Design and realization of discrete memristive hyperchaotic map with application in image encryption
,”
Chaos, Solitons Fractals
165
,
112781
(
2022
).
25.
M.
Wang
,
M.
An
,
S.
He
,
X.
Zhang
,
H.
Ho-Ching Iu
, and
Z.
Li
, “
Two-dimensional memristive hyperchaotic maps with different coupling frames and its hardware implementation
,”
Chaos
33
,
073129
(
2023
).
26.
L.
Yang
and
Q.
Lai
, “
Construction and implementation of discrete memristive hyperchaotic map with hidden attractors and self-excited attractors
,”
Integration
94
,
102091
(
2024
).
27.
O. A.
Almatroud
and
V.-T.
Pham
, “
Building fixed point-free maps with memristor
,”
Mathematics
11
,
1319
(
2023
).
28.
S.
He
,
K.
Sun
,
Y.
Peng
, and
L.
Wang
, “
Modeling of discrete fracmemristor and its application
,”
AIP Adv.
10
,
015332
(
2020
).
29.
Y.
Li
,
C.
Li
,
Y.
Zhao
, and
S.
Liu
, “
Memristor-type chaotic mapping
,”
Chaos
32
,
021104
(
2022
).
30.
F.
Yuan
,
G.
Xing
, and
Y.
Deng
, “
Flexible cascade and parallel operations of discrete memristor
,”
Chaos, Solitons Fractals
166
,
112888
(
2023
).
31.
S.
He
,
K.
Hu
,
M.
Wang
,
H.
Wang
, and
X.
Wu
, “
Design and dynamics of discrete dual-memristor chaotic maps and its application in speech encryption
,”
Chaos, Solitons Fractals
188
,
115517
(
2024
).
32.
Y.
Cao
,
Z.
Li
, and
S.
He
, “
Complex hidden dynamics in a memristive map with delta connection and its application in image encryption
,”
Nonlinear Dyn.
112
,
7597
7613
(
2024
).
33.
Y.
Peng
,
J.
Liu
,
S.
He
, and
K.
Sun
, “
Discrete fracmemristor-based chaotic map by Grunwald–Letnikov difference and its circuit implementation
,”
Chaos, Solitons Fractals
171
,
113429
(
2023
).
34.
I.
Podlubny
, “Geometric and physical interpretation of fractional integration and fractional differentiation,” arXiv math/0110241 (2001), pp. 367–386.
35.
H.
Wang
,
G.
Li
,
K.
Sun
, and
S.
He
, “
An improved Hénon map based on G-L fractional-order discrete memristor and its FPGA implementation
,”
Eur. Phys. J. Plus
139
,
154
(
2024
).
36.
A. O.
Almatroud
,
G.
Grassi
,
A. A.
Khennaoui
,
A.
Abbes
,
A.
Ouannas
,
S.
Alshammari
, and
S.
Albosaily
, “
A novel fractional memristor-based grassi-miller map: Hyperchaotic behavior and coexistence of attractors
,”
Alexandria Eng. J.
93
,
1
6
(
2024
).
37.
A.
Abbes
,
A.
Ouannas
,
A.
Hioual
, and
S.
Momani
, “
Hidden chaos in a new memristor-based discrete system with commensurate, incommensurate and variable fractional orders
,”
Phys. Scr.
99
,
105233
(
2024
).
38.
T.
Hamadneh
,
A.
Abbes
,
H.
Al-Tarawneh
,
G. M.
Gharib
,
W. M. M.
Salameh
,
M. S.
Al Soudi
, and
A.
Ouannas
, “
On chaos and complexity analysis for a new sine-based memristor map with commensurate and incommensurate fractional orders
,”
Mathematics
11
,
4308
(
2023
).
39.
K.
Nosrati
and
M.
Shafiee
, “
Fractional-order singular logistic map: Stability, bifurcation and chaos analysis
,”
Chaos, Solitons Fractals
115
,
224
238
(
2018
).
40.
L.
Huang
,
L.
Wang
, and
D.
Shi
, “
Discrete fractional order chaotic systems synchronization based on the variable structure control with a new discrete reaching-law
,”
IEEE/CAA J. Autom. Sin.
1
7
(
2016
).
41.
A.
Karthikeyan
and
K.
Rajagopal
, “
Fpga implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations
,”
Pramana
90
,
14
(
2018
).
42.
Y.
Peng
,
K.
Sun
, and
S.
He
, “
A discrete memristor model and its application in Hénon map
,”
Chaos, Solitons Fractals
137
,
109873
(
2020
).
43.
L.
Chua
, “If it’s pinched it’s a memristor,” in Handbook of Memristor Networks (Springer, Cham,
2019
), pp. 15–88.
44.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
You do not currently have access to this content.