Discerning chaos in quantum systems is an important problem as the usual route of Lyapunov exponents in classical systems is not straightforward in quantum systems. A standard route is the comparison of statistics derived from model physical systems to those from random matrix theory (RMT) ensembles, of which the most popular is the nearest-neighbor-spacing distribution, which almost always shows good agreement with chaotic quantum systems. However, even in these cases, the long-range statistics (like number variance and spectral rigidity), which are also more difficult to calculate, often show disagreements with RMT. As such, a more stringent test for chaos in quantum systems, via an analysis of intermediate-range statistics, is needed, which will additionally assess the extent of agreement with RMT universality. In this paper, we deduce the effective level-repulsion parameters and the corresponding Wigner–surmise-like results of the next-nearest-neighbor-spacing distribution (nNNSD) for integrable systems (semi-Poissonian statistics) as well as the three classical quantum chaotic Wigner–Dyson regimes, by stringent comparisons to numerical RMT models and benchmarking against our exact analytical results for 3 × 3 Gaussian matrix models, along with a semi-analytical form for the nNNSD in the orthogonal-to-unitary symmetry crossover. To illustrate the robustness of these RMT based results, we test these predictions against the nNNSD obtained from quantum chaotic models as well as disordered lattice spin models. This reinforces the Bohigas–Giannoni–Schmit and the Berry–Tabor conjectures, extending the associated universality to longer-range statistics. In passing, we also highlight the equivalence of nNNSD in the apparently distinct orthogonal-to-unitary and diluted-symplectic-to-unitary crossovers.

1.
F.
Haake
,
S.
Gnutzmann
, and
M.
Kuś
,
Quantum Signatures of Chaos
(
Springer
,
Cham
,
2018
).
2.
L. E.
Reichl
,
The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations
(
Springer
,
New York
,
2004
).
3.
L. E.
Stöckmann
,
Quantum Chaos: An Introduction
(
Cambridge University Press
,
Cambridge
,
2007
).
4.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2002
).
5.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer-Verlag
,
New York
,
1996
).
6.
S.
Weigert
,
Physica D
56
, 107 (1992)
J.-S.
Caux
and
J.
Mossel
, “Remarks on the notion of quantum integrability,”
J. Stat. Mech.: Theory Exp.
2011
(02),
P02023
.
7.
M. V.
Berry
and
M.
Tabor
,
Proc. R. Soc. London A
356
,
375
(
1977
).
8.
O.
Bohigas
,
M. J.
Giannoni
, and
C.
Schmit
,
Phys. Rev. Lett.
52
,
1
(
1984
).
9.
F. J.
Dyson
,
J. Math. Phys.
3
,
1199
(
1962
).
10.
F. J.
Dyson
,
J. Math. Phys.
3
,
140
(
1962
).
11.
E. P.
Wigner
,
Math. Proc. Cambridge Philos. Soc.
47
,
790
(
1951
).
12.
E. P.
Wigner
, in Gathnberg Conference on Neutron Physics by Time-of-Flight (Oak-Ridge National Laboratory, 1957), Report No. 2309, p. 59.
13.
E. P.
Wigner
,
Statistical Properties of Real Symmetric Matrices with Many Dimensions
(
Princeton University Press
,
Princeton, NJ
,
1957
), pp.
188
198
.
14.
E. P.
Wigner
,
Ann. Math.
62
,
548
(
1955
).
15.
E. P.
Wigner
,
Ann. Math.
65
,
203
(
1957
).
16.
E. P.
Wigner
,
Ann. Math.
67
,
325
(
1958
).
19.
F. J.
Dyson
,
J. Math. Phys.
3
,
1191
(
1962
).
21.
P. B.
Kahn
and
C. E.
Porter
,
Nucl. Phys.
48
,
385
(
1963
).
22.
C. E.
Porter
, Statistical Theories of Spectra: Fluctuations, Perspectives in Physics: A Series of Reprint Collections (Academic Press, New York, 1965).
23.
M. L.
Mehta
and
A.
Pandey
,
J. Phys. A: Math. Gen.
16
,
2655
(
1983
).
24.
A.
Pandey
and
M. L.
Mehta
,
Commun. Math. Phys.
87
,
449
(
1983
).
25.
M. L.
Mehta
, Random Matrices, Pure and Applied Mathematics (Elsevier Science, Netherlands, 2004).
26.
F. J.
Dyson
and
M. L.
Mehta
,
J. Math. Phys.
4
,
701
(
1963
).
27.
M. L.
Mehta
and
F. J.
Dyson
,
J. Math. Phys.
4
,
713
(
1963
).
28.
T.
Guhr
,
A.
Muller-Groeling
, and
H. A.
Weidenmuller
,
Phys. Rep.
299
,
189
(
1998
).
29.
C. W. J.
Beenakker
,
Rev. Mod. Phys.
69
,
731
(
1997
).
30.
31.
V.
Plerou
,
P.
Gopikrishnan
,
B.
Rosenow
,
L. A.
Nunes Amaral
, and
H. E.
Stanley
,
Phys. Rev. Lett.
83
,
1471
(
1999
).
32.
M. S.
Santhanam
and
P. K.
Patra
,
Phys. Rev. E
64
,
016102
(
2001
).
34.
I. J.
Farkas
,
I.
Derényi
,
A.-L.
Barabási
, and
T.
Vicsek
,
Phys. Rev. E
64
,
026704
(
2001
).
35.
G.
Jafari
,
A. H.
Shirazi
,
A.
Namaki
, and
R.
Raei
,
Comput. Sci. Eng.
13
,
84
(
2011
).
36.
F.
Luo
,
J.
Zhong
,
Y.
Yang
,
R. H.
Scheuermann
, and
J.
Zhou
,
Phys. Lett. A
357
,
420
(
2006
).
38.
Handbook of Random Matrix Theory, edited by G. Akemann, J. Baik, and P. D. Francesco (Oxford University Press, Oxford, 2011).
39.
C. P.
Dettmann
,
O.
Georgiou
, and
G.
Knight
,
Europhys. Lett.
118
,
18003
(
2017
).
40.
A. Y.
Abul-Magd
and
M. H.
Simbel
,
Phys. Rev. E
60
,
5371
(
1999
).
41.
Y.
Avishai
,
J.
Richert
, and
R.
Berkovits
,
Phys. Rev. B
66
,
052416
(
2002
).
42.
M.
Collura
,
H.
Aufderheide
,
G.
Roux
, and
D.
Karevski
,
Phys. Rev. A
86
,
013615
(
2012
).
43.
N.
Chavda
and
V.
Kota
,
Phys. Lett. A
377
,
3009
(
2013
).
44.
S.
Iyer
,
V.
Oganesyan
,
G.
Refael
, and
D. A.
Huse
,
Phys. Rev. B
87
,
134202
(
2013
).
45.
R.
Modak
and
S.
Mukerjee
,
New J. Phys.
16
,
093016
(
2014
).
46.
D.
Kundu
,
S.
Kumar
, and
S.
Sen Gupta
,
Phys. Rev. B
105
,
014205
(
2022
).
47.
M. S.
Santhanam
and
P. K.
Patra
,
Phys. Rev. E
64
,
016102
(
2001
).
48.
A.
Pandey
,
S.
Puri
, and
S.
Kumar
,
Phys. Rev. E
71
,
066210
(
2005
).
49.
S.
Jalan
and
J. N.
Bandyopadhyay
,
Phys. Rev. E
76
,
046107
(
2007
).
50.
S. M.
Abuelenin
and
A. Y.
Abul-Magd
,
Procedia Comput. Sci.
12
,
69
(
2012
).
51.
C. L.
Bertrand
and
A. M.
García-García
,
Phys. Rev. B
94
,
144201
(
2016
).
52.
D.
Kundu
,
S.
Kumar
, and
S.
Sen Gupta
,
Phys. Rev. B
107
,
094205
(
2023
).
53.
J. M. G.
Gómez
,
R. A.
Molina
,
A.
Relaño
, and
J.
Retamosa
,
Phys. Rev. E
66
,
036209
(
2002
).
54.
M. M.
Duras
and
K.
Sokalski
,
Phys. Rev. E
54
,
3142
(
1996
).
55.
D.
Engel
,
J.
Main
, and
G.
Wunner
,
J. Phys. A: Math. Gen.
31
,
6965
(
1998
).
56.
S. H.
Tekur
,
U. T.
Bhosale
, and
M. S.
Santhanam
,
Phys. Rev. B
98
,
104305
(
2018
).
57.
P.
Rao
,
M.
Vyas
, and
N. D.
Chavda
,
Eur. Phys. J. Spec. Top.
229
,
2603
(
2020
).
59.
60.
Y. Y.
Atas
,
E.
Bogomolny
,
O.
Giraud
, and
G.
Roux
,
Phys. Rev. Lett.
110
,
084101
(
2013
).
61.
Y. Y.
Atas
,
E.
Bogomolny
,
O.
Giraud
,
P.
Vivo
, and
E.
Vivo
,
J. Phys. A: Math. Theor.
46
,
355204
(
2013
).
62.
S. H.
Tekur
,
S.
Kumar
, and
M. S.
Santhanam
,
Phys. Rev. E
97
,
062212
(
2018
).
63.
A.
Sarkar
,
M.
Kothiyal
, and
S.
Kumar
,
Phys. Rev. E
101
,
012216
(
2020
).
64.
E. B.
Bogomolny
,
U.
Gerland
, and
C.
Schmit
,
Phys. Rev. E
59
,
R1315
(
1999
).
66.
67.
G.
Casati
and
L.
Molinari
,
Prog. Theor. Phys. Supp.
98
,
287
(
1989
).
69.
A. B.
Jaiswal
,
A.
Pandey
, and
R.
Prakash
,
Europhys. Lett.
127
,
30004
(
2019
).
70.
A.
Kumar
,
A.
Pandey
, and
S.
Puri
,
Phys. Rev. E
101
,
022218
(
2020
).
71.
Y. G.
Sinai
,
Dokl. Akad. Nauk SSSR
153
,
1261
(
1963
), see http://mi.mathnet.ru/dan28929
73.
R. S.
Chandramouli
,
R. K.
Srivastav
, and
S.
Kumar
,
Chaos
30
,
123120
(
2020
).
74.
C. W.
Groth
,
M.
Wimmer
,
A. R.
Akhmerov
, and
X.
Waintal
,
New J. Phys.
16
,
063065
(
2014
).
75.
The NNSD of integrable systems follow Poissonian statistics, but the higher-order spacing distributions (like nNNSD here) do not follow Poissonian statistics and, in general, referred to as semi-Poissonian distributions.58,64 The nomenclature arises from the observation that, the NNSD of a new sequence { ε ~ j }, obtained by averaging neighboring elements [ ε ~ j = ( ε ~ j + ε ~ j + 1 ) / 2] from an ordered Poissonian distributed sequence ( ε ~ 1 ε ~ j ε ~ j + 1 ), follows the semi-Poissonian distribution P Po 2 ( w 2 ).
76.
G.
Lenz
and
F.
Haake
,
Phys. Rev. Lett.
65
,
2325
(
1990
).
77.
B. V.
Chirikov
,
Research Concerning the Theory of Non-linear Resonance and Stochasticity
(
CERN
,
Geneva
,
1971
), Translated at CERN from the Russian (IYAF-267-TRANS-E).
78.
A.
Lichtenberg
and
M.
Lieberman
, Regular and Stochastic Motion, Applied Mathematical Sciences (Springer New York, 2013).
79.
M.
Santhanam
,
S.
Paul
, and
J. B.
Kannan
,
Phys. Rep.
956
,
1
(
2022
).
81.
A.
Pandey
,
R.
Ramaswamy
, and
P.
Shukla
,
Pramana
41
,
L75
(
1993
).
82.
P.
Shukla
and
A.
Pandey
,
Nonlinearity
10
,
979
(
1997
).
83.
G.
Casati
,
I.
Guarneri
,
F.
Izrailev
, and
R.
Scharf
,
Phys. Rev. Lett.
64
,
5
(
1990
).
84.
Y. V.
Fyodorov
and
A. D.
Mirlin
,
Phys. Rev. Lett.
67
,
2405
(
1991
).
85.
For the integrable case, the parameter α is varied from 11 to 30, and for the chaotic case, it is varied from 20 001 to 20 020, to construct the matrix ensembles.
86.
V.
Lopac
,
I.
Mrkonjić
, and
D.
Radić
,
Phys. Rev. E
59
,
303
(
1999
).
87.
L. A.
Bunimovich
,
Funct. Anal. Appl.
8
,
254
(
1974
).
88.
L. A.
Bunimovich
,
Commun. Math. Phys.
65
,
295
(
1979
).
89.
E.
Cuevas
,
E.
Louis
, and
J. A.
Vergés
,
Phys. Rev. Lett.
77
,
1970
(
1996
).
90.
B.
Dietz
,
T.
Klaus
,
M.
Miski-Oglu
,
A.
Richter
,
M.
Wunderle
, and
C.
Bouazza
,
Phys. Rev. Lett.
116
,
023901
(
2016
).
91.
K.
Frahm
and
J.-L.
Pichard
,
J. Phys. I France
5
,
877
(
1995
).
92.
L.
Huang
,
Y.-C.
Lai
, and
C.
Grebogi
,
Chaos
21
,
013102
(
2011
).
93.
V. K. B.
Kota
,
Embedded Random Matrix Ensembles in Quantum Physics
(
Springer
,
Cham
,
2014
).
94.
P.
Yu
,
Z.-Y.
Li
,
H.-Y.
Xu
,
L.
Huang
,
B.
Dietz
,
C.
Grebogi
, and
Y.-C.
Lai
,
Phys. Rev. E
94
,
062214
(
2016
).
96.
D. R.
Hofstadter
,
Phys. Rev. B
14
,
2239
(
1976
).
97.
100.
D.
Sen
and
R.
Chitra
,
Phys. Rev. B
51
,
1922
(
1995
).
101.
S.
Kitamura
,
T.
Oka
, and
H.
Aoki
,
Phys. Rev. B
96
,
014406
(
2017
).
104.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
,
241
(
1958
).
105.
R.
Hamazaki
and
M.
Ueda
,
Phys. Rev. E
99
,
042116
(
2019
).
106.
J.
Vahedi
,
A.
Ashouri
, and
S.
Mahdavifar
,
Chaos
26
,
103106
(
2016
).
107.
K.
Yosida
,
Theory of Magnetism
(
Springer Berlin
,
Heidelberg
,
1996
).
108.
Mesoscopic Phenomena in Solids, edited by B. Altshuler, P. Lee, and W. Webb (North-Holland, Amsterdam, 1991).
109.
A. Y.
Abul-Magd
,
J. Phys. A: Math. Gen.
29
,
1
(
1996
).
110.
S. D.
Geraedts
,
R.
Nandkishore
, and
N.
Regnault
,
Phys. Rev. B
93
,
174202
(
2016
).
111.
S.
Kumar
and
A.
Pandey
,
Ann. Phys.
326
,
1877
(
2011
).
You do not currently have access to this content.