In this work, the optical field distribution of the optical frequency comb in the whispering gallery mode microcavity is demonstrated based on the coupled Lugiato–Lefever equation model with high-order dispersion, Raman and self-steepening effects, which effectively adjusts the phase-matching conditions of the optical field and the spectral envelope morphology inside the cavity, and inhibits the occurrence of the unstable state of the optical frequency comb. By exploring the effects of the frequency detuning and pump power on the spectral characteristics of optical frequency combs, it is found that the change in the frequency detuning and pump power affects the intensity of the optical field in the microcavity, which in turn changes the intensity distribution and spectral bandwidth of the optical frequency comb. The larger the pump power is, the larger the detuning tunable range is, and the detuning tunable range also adds with the increase in pump power. In addition, the frequency distribution of the mode in the optical frequency comb is effectively regulated and the stability is improved. The change in frequency also has a significant effect on the phase relationship between the modes and the uniformity of the frequency interval. The influence of the high-order effects on the optical frequency comb is also systematically studied. The balance between the Raman gain and the fourth-order dispersion can promote the mode locking and realize the stability of the frequency comb. The addition of the self-steepening effect causes the power in the cavity to oscillate within a certain range.

1.
Z. L.
Newman
,
V.
Maurice
,
T.
Drake
,
J. R.
Stone
,
T. C.
Briles
,
D. T.
Spencer
,
C.
Fredrick
,
Q.
Li
,
D.
Westly
,
B. R.
Ilic
,
B.
Shen
,
M.-G.
Suh
,
K. Y.
Yang
,
C.
Johnson
,
D. M. S.
Johnson
,
L.
Hollberg
,
K. J.
Vahala
,
K.
Srinivasan
,
S. A.
Diddams
,
J.
Kitching
,
S. B.
Papp
, and
M. T.
Hummon
, “
Architecture for the photonic integration of an optical atomic clock
,”
Optica
6
(
5
),
680
(
2019
).
2.
V.
Torres-Company
and
A. M.
Weiner
, “
Optical frequency comb technology for ultra-broadband radio-frequency photonics
,”
Laser Photonics Rev.
8
(
3
),
368
393
(
2014
).
3.
P.
Trocha
,
M.
Karpov
,
D.
Ganin
,
M. H. P.
Pfeiffer
,
A.
Kordts
,
S.
Wolf
,
J.
Krockenberger
,
P.
Marin-Palomo
,
C.
Weimann
,
S.
Randel
,
W.
Freude
,
T. J.
Kippenberg
, and
C.
Koos
, “
Ultrafast optical ranging using microresonator soliton frequency combs
,”
Science
359
,
887–891
(
2018
).
4.
E. S.
Lamb
,
D. R.
Carlson
,
D. D.
Hickstein
,
J. R.
Stone
,
S. A.
Diddams
, and
S. B.
Papp
, “
Optical-Frequency measurements with a Kerr microcomb and photonic-chip supercontinuum
,”
Phys. Rev. Appl.
9
(
2
),
024030
(
2018
).
5.
F. C.
Cruz
,
D. L.
Maser
,
T.
Johnson
,
G.
Ycas
,
A.
Klose
,
F. R.
Giorgetta
,
I.
Coddington
, and
S. A.
Diddams
, “
Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy
,”
Opt. Express
23
(
20
),
26814
26824
(
2015
).
6.
M.
Wang
,
L.
Fan
,
Z.
Lu
,
Z.
Guo
,
R.
Cai
,
Q.
Tan
,
G.
Jiang
,
T.
Wu
,
C.
Xie
,
Y.
Fu
, and
K.
Wang
, “
Kerr frequency comb and stimulated Raman comb covering S + C + L + U band based on a packaged silica spherical microcavity
,”
J. Lightwave Technol.
41
(
1
),
199
208
(
2023
).
7.
T. J.
Kippenberg
,
R.
Holzwarth
, and
S. A.
Diddams
, “
Microresonator-based optical frequency combs
,”
Science
332
(
6029
),
555
559
(
2011
).
8.
R.
Bandara
,
A.
Giraldo
,
N. G. R.
Broderick
, and
B.
Krauskopf
, “
Generalized and multi-oscillation solitons in the nonlinear Schrödinger equation with quartic dispersion
,”
Chaos
33
(
7
),
073154
(
2023
).
9.
A.
Coillet
,
I.
Balakireva
,
R.
Henriet
,
K.
Saleh
,
L.
Larger
,
J. M.
Dudley
,
C. R.
Menyuk
, and
Y. K.
Chembo
, “
Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators
,”
IEEE Photonics J.
5
(
4
),
6100409
(
2013
).
10.
A. B.
Matsko
,
W.
Liang
,
A. A.
Savchenkov
, and
L.
Maleki
, “
Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators
,”
Opt. Lett.
38
(
4
),
525
527
(
2013
).
11.
X.
Xue
,
Y.
Xuan
,
Y.
Liu
,
P.-H.
Wang
,
S.
Chen
,
J.
Wang
,
D. E.
Leaird
,
M.
Qi
, and
A. M.
Weiner
, “
Mode-locked dark pulse Kerr combs in normal-dispersion microresonators
,”
Nat. Photonics
9
(
9
),
594
600
(
2015
).
12.
Y. K.
Chembo
and
N.
Yu
, “
Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators
,”
Phys. Rev. A
82
(
3
),
033801
(
2010
).
13.
T.
Herr
,
V.
Brasch
,
J. D.
Jost
,
C. Y.
Wang
,
N. M.
Kondratiev
,
M. L.
Gorodetsky
, and
T. J.
Kippenberg
, “
Temporal solitons in optical microresonators
,”
Nat. Photonics
8
(
2
),
145
152
(
2014
).
14.
C.
Bao
,
H.
Taheri
,
L.
Zhang
,
A.
Matsko
,
Y.
Yan
,
P.
Liao
,
L.
Maleki
, and
A. E.
Willner
, “
High-order dispersion in Kerr comb oscillators
,”
J. Opt. Soc. Am. B
34
(
4
),
715
(
2017
).
15.
R. J.
Weiblen
and
I.
Vurgaftman
, “
Bichromatic pumping in mid-infrared microresonator frequency combs with higher-order dispersion
,”
Opt. Express
27
(
4
),
4238
(
2019
).
16.
G.
D’Aguanno
and
C. R.
Menyuk
, “
Nonlinear mode coupling in whispering-gallery-mode resonators
,”
Phys. Rev. A
93
(
4
),
043820
(
2016
).
17.
Y.
Okawachi
,
M. R. E.
Lamont
,
K.
Luke
,
D. O.
Carvalho
,
M.
Yu
,
M.
Lipson
, and
A. L.
Gaeta
, “
Bandwidth shaping of microresonator-based frequency combs via dispersion engineering
,”
Opt. Lett.
39
(
12
),
3535
(
2014
).
18.
S.
Fujii
,
T.
Kato
,
R.
Suzuki
,
A.
Hori
, and
T.
Tanabe
, “
Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity
,”
J. Opt. Soc. Am. B
35
(
1
),
100
(
2018
).
19.
F.
Xu
,
Y.
Zhao
,
Y.-H.
Wu
,
W.-C.
Wang
, and
X.-Y.
Jin
, “
Stability and non-linear dynamic analysis of Kerr optical frequency combs in dual-coupled microcavities with high-order dispersion
,”
Acta Phys. Sin.
71
(
18
),
184204
(
2022
).
20.
Z.
Guo
,
F.
Ouyang
,
Z.-Z.
Lu
,
M.-Y.
Wang
,
Q.-G.
Tan
,
C.-F.
Xie
,
B.
Wei
, and
X.-D.
He
, “
Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator
,”
Acta Phys. Sin.
73
(
3
),
034202
(
2024
).
21.
Y. K.
Chembo
and
C. R.
Menyuk
, “
Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators
,”
Phys. Rev. A
87
(
5
),
053852
(
2013
).
22.
Q.-H.
Cao
,
K.-L.
Geng
,
B.-W.
Zhu
,
Y.-Y.
Wang
,
J.
Li
, and
C.-Q.
Dai
, “
Annular rogue waves in whispering gallery mode optical resonators
,”
Chaos, Solitons Fractals
176
,
114146
(
2023
).
23.
Q.-H.
Cao
,
K.-L.
Geng
,
B.-W.
Zhu
,
Y.-Y.
Wang
, and
C.-Q.
Dai
, “
Scalar vortex solitons and vector dipole solitons in whispering gallery mode optical microresonators
,”
Chaos, Solitons Fractals
166
,
112895
(
2023
).
24.
Y. K.
Chembo
,
A.
Coillet
,
G.
Lin
,
P.
Colet
, and
D.
Gomila
, “
Fluctuations and correlations in Kerr optical frequency combs with additive Gaussian noise
,”
Chaos
30
(
8
),
083146
(
2020
).
25.
M. G.
Clerc
,
S.
Coulibaly
,
P.
Parra-Rivas
, and
M.
Tlidi
, “
Nonlocal Raman response in Kerr resonators: Moving temporal localized structures and bifurcation structure
,”
Chaos
30
(
8
),
083111
(
2020
).
26.
J.
Li
,
R.
Yu
,
J.
Ma
, and
Y.
Wu
, “
All-optical control of optical frequency combs via quantum interference effects in a single-emitter-microcavity system
,”
Phys. Rev. A
91
(
6
),
063834
(
2015
).
27.
G.
D’Aguanno
and
C. R.
Menyuk
, “
Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator
,”
Eur. Phys. J. D
71
(
3
),
74
(
2017
).
28.
M.
Liu
,
L.
Wang
,
Q.
Sun
,
S.
Li
,
Z.
Ge
,
Z.
Lu
,
W.
Wang
,
G.
Wang
,
W.
Zhang
,
X.
Hu
, and
W.
Zhao
, “
Influences of multiphoton absorption and free-carrier effects on frequency-comb generation in normal dispersion silicon microresonators
,”
Photonics Res.
6
(
4
),
238
(
2018
).
29.
T.
Hansson
,
D.
Modotto
, and
S.
Wabnitz
, “
Mid-infrared soliton and Raman frequency comb generation in silicon microrings
,”
Opt. Lett.
39
(
23
),
6747
6750
(
2014
).
30.
Supercontinuum Generation in Optical Fibers
, edited by
J. M.
Dudley
and
J. R.
Taylor
(
Cambridge University Press
,
Cambridge
,
2010
).
31.
M. H.
Anderson
,
A.
Tikan
,
A.
Tusnin
,
J.
Riemensberger
,
A.
Davydova
,
R. N.
Wang
, and
T. J.
Kippenberg
, “
Dissipative solitons and switching waves in dispersion-modulated Kerr cavities
,”
Phys. Rev. X
13
(
1
),
011040
(
2023
).
32.
A. A.
Nair
,
K.
Porsezian
, and
M.
Jayaraju
, “
Impact of higher order dispersion and nonlinearities on modulational instability in a dual-core optical fiber
,”
Eur. Phys. J. D
72
(
1
),
6
(
2018
).
33.
G.
Guan
,
A.
Liu
,
C.
Zheng
,
M.
Pi
,
K.
Zheng
,
B.
Zhu
,
X.
Wu
,
J.
Zheng
,
Y.
Wang
, and
F. K.
Tittel
, “
Numerical investigation of on-chip multi-gas sensing using a low-repetition-frequency microcavity Kerr comb with backward interference structure
,”
J. Lightwave Technol.
41
(
10
),
3208
3224
(
2023
).
34.
X.
Jin
,
S.-Y.
Xiao
,
Q.-H.
Gong
, and
Q.-F.
Yang
, “
Generation, development, and application of microcombs
,”
Acta Phys. Sin.
72
(
23
),
234203
(
2023
).
35.
J.
Li
,
R.
Wang
,
A. A.
Afridi
,
Y.
Lu
,
X.
Shi
,
W.
Sun
,
H.
Ou
, and
Q.
Li
, “
Efficient Raman lasing and Raman–Kerr interaction in an integrated silicon carbide platform
,”
ACS Photonics
11
(
2
),
795
800
(
2024
).
36.
X.
Jin
,
Y.
Yang
,
X.
Xu
,
K.
Wang
,
L.
Yu
, and
H.
Xia
, “
Broadband manipulation of stokes Raman frequency combs via mode division multiplexing in optical microcavities
,”
J. Lightwave Technol.
40
(
15
),
5141
5151
(
2022
).
37.
W.
Shi
,
Z.
Li
,
X.
Fan
,
Q.
Sun
,
M.
Liu
,
H.
Huang
,
Z.
Lu
, and
W.
Zhao
, “
Dynamics of dark pulse affected by higher-order effects in microresonators
,”
IEEE Photonics J.
15
(
1
),
1
7
(
2023
).
38.
K.
Tian
,
J.
Yu
,
F.
Lei
,
J.
Ward
,
A.
Li
,
P.
Wang
, and
S.
Nic Chormaic
, “
Blue band nonlinear optics and photodarkening in silica microdevices
,”
Photonics Res.
10
(
9
),
2073
2080
(
2022
).
39.
R.
Gao
,
Y.-N.
Yang
,
C.-Y.
Zhan
,
Z.-Z.
Zhang
,
Y.
Deng
,
Z.-X.
Wang
,
K.
Liang
, and
S.-C.
Feng
, “
Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator
,”
Acta Phys. Sin.
73
(
3
),
034203
(
2024
).
40.
A.
Khanolkar
,
Y.
Zang
, and
A.
Chong
, “
Complex swift Hohenberg equation dissipative soliton fiber laser
,”
Photonics Res.
9
(
6
),
1033
1038
(
2021
).
You do not currently have access to this content.