Stability is an essential problem in theoretical and experimental studies of solitons in nonlinear media with fractional diffraction, which is represented by the Riesz derivative with Lévy index (LI) α, taking values α < 2. Fractional solitons are unstable at α 1 or α 2 in uniform one-dimensional media with the cubic or quintic self-focusing, respectively. We demonstrate that, in these cases, the solitons may be effectively stabilized by pinning to a delta-functional trapping potential (attractive defect), which is a relevant setting in optical waveguides with the effective fractional diffraction. Using the respective fractional nonlinear Schrödinger equation with the delta-functional potential term, we find that, in the case of the cubic self-focusing, the fractional solitons are fully stabilized by the pinning to the defect for α = 1 and partly stabilized for α < 1. In the case of the quintic self-focusing, the full and partial stabilization are found for α = 2 and α < 2, respectively. In both cases, the instability boundary is exactly predicted by the Vakhitov–Kolokolov criterion. Unstable solitons spontaneously transform into oscillating breathers. A variational approximation (VA) is elaborated parallel to the numerical analysis, with a conclusion that the VA produces accurate results for lower LI values, i.e., stronger fractionality. In the cubic medium, collisions of traveling stable solitons with repulsive and attractive defects are addressed too, demonstrating outcomes in the form of rebound, splitting, and passage.

1.
A. I.
Saichev
and
G. M.
Zaslavsky
, “
Fractional kinetic equations: Solutions and applications
,”
Chaos
7
,
753
764
(
1997
).
2.
G. M.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
,
461
580
(
2002
).
3.
N.
Laskin
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
).
4.
B. A.
Stickler
, “
Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal
,”
Phys. Rev. E
88
,
012120
(
2013
).
5.
F.
Pinsker
,
W.
Bao
,
Y.
Zhang
,
H.
Ohadi
,
A.
Dreismann
, and
J. J.
Baumberg
, “
Fractional quantum mechanics in polariton condensates with velocity-dependent mass
,”
Phys. Rev. B
92
,
195310
(
2015
).
6.
N.
Laskin
,
Fractional Quantum Mechanics
(
World Scientific
,
Singapore
,
2018
).
7.
S.
Longhi
, “
Fractional Schrödinger equation in optics
,”
Opt. Lett.
40
,
1117
1120
(
2015
).
8.
B. A.
Malomed
, “
Optical solitons and vortices in fractional media: A mini-review of recent results
,”
Photonics
8
,
353
(
2021
).
9.
B. A.
Malomed
, “
Basic fractional nonlinear-wave models and solitons
,”
Chaos
34
,
022102
(
2024
).
10.
S.
Liu
,
Y.
Zhang
,
B. A.
Malomed
, and
E.
Karimi
, “
Experimental realisations of the fractional Schrödinger equation in the temporal domain
,”
Nat. Commun.
14
,
222
(
2023
).
11.
S.
Secchi
and
M.
Squassina
, “
Soliton dynamics for fractional Schrödinger equations
,”
Appl. Anal.
93
,
1702
1729
(
2014
).
12.
L. W.
Dong
,
C. M.
Huang
, and
W.
Qi
, “
Nonlocal solitons in fractional dimensions
,”
Opt. Lett.
44
,
4917-4920
(
2019
).
13.
L.
Zeng
,
M. R.
Belić
,
D.
Mihalache
,
J.
Li
,
D.
Xiang
,
X.
Zeng
, and
X.
Zhu
, “
Solitons in a coupled system of fractional nonlinear Schrödinger equations
,”
Physica D
456
,
133924
(
2023
).
14.
S.
Liu
,
Y.
Zhang
,
S.
Virally
,
E.
Karimi
,
B. A.
Malomed
, and
D. V.
Seletskiy
, “
Observation of the spectral bifurcation in the fractional nonlinear Schrödinger equation
,”
Laser Photon. Rev.
2025
,
2401714
.
15.
V. T.
Hoang
,
J.
Widjaja
,
Y. L.
Qiang
,
A. F. J.
Runge
, and
C. M.
de Sterke
, “Observation of fractional evolution in nonlinear optics,” arXiv:2410.23671.
16.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H. Freeman
,
New York
,
1982
).
17.
M.
Cai
and
C. P.
Li
, “
On Riesz derivative
,”
Fract. Calc. Appl. Anal.
22
,
287
301
(
2019
).
18.
M.
Caputo
, “
Linear models of dissipation whose Q is almost frequency independent—II
,”
Geophys. J. Int.
13
,
529
539
(
1967
).
19.
N. G.
Vakhitov
and
A. A.
Kolokolov
, “
Stationary solutions of the wave equation in a medium with nonlinearity saturation
,”
Radiophys. Quantum Electron.
16
,
783
789
(
1973
).
20.
L.
Bergé
, “
Wave collapse in physics: Principles and applications to light and plasma waves
,”
Phys. Rep.
303
,
259
370
(
1998
).
21.
G.
Fibich
,
The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse
(
Springer
,
Heidelberg
,
2015
).
22.
M.
Chen
,
S.
Zeng
,
D.
Lu
,
W.
Hu
, and
Q.
Guo
, “
Optical solitons, self-focusing, and wave collapse in a space-fractional Schrö dinger equation with a Kerr-type nonlinearity
,”
Phys. Rev. E
98
,
022211
(
2018
).
23.
F. Kh.
Abdullaev
and
M.
Salerno
, “
Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices
,”
Phys. Rev. A
72
,
033617
(
2005
).
24.
A. S.
Reyna
and
C. B.
de Araújo
, “
Spatial phase modulation due to quintic and septic nonlinearities in metal colloids
,”
Opt. Exp.
22
,
22456
(
2014
).
25.
A. S.
Reyna
and
C. B.
de Araújo
, “
High-order optical nonlinearities in plasmonic nanocomposites—A review
,”
Adv. Opt. Photon.
9
,
720
774
(
2017
).
26.
L.
Wang
,
B. A.
Malomed
, and
Z.
Yan
, “
Attraction centers and P T-symmetric delta-functional dipoles in critical and supercritical self-focusing media
,”
Phys. Rev. E
99
,
052206
(
2019
).
27.
C. M.
Huang
and
L. W.
Dong
, “
Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice
,”
Opt. Lett.
41
,
5636
5639
(
2016
).
28.
L.
Zeng
and
J.
Zeng
, “
One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: Nonlinear lattice
,”
Opt. Lett.
44
,
2661
2664
(
2019
).
29.
L.
Zeng
and
J.
Zeng
, “
Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities
,”
Commun. Phys.
3
,
26
(
2020
).
30.
X.
Zhu
,
M. R.
Belić
,
D.
Mihalache
,
D.
Xiang
, and
L.
Zeng
, “
Two-dimensional gap solitons supported by a parity-time-symmetric optical lattice with saturable nonlinearity and fractional-order diffraction
,”
Opt. Laser Technol.
184
,
112426
(
2025
).
31.
S. K.
Turitsyn
,
J. E.
Prilepsky
,
S. T.
Le
,
S.
Wahls
,
L. L.
Frumin
,
M.
Kamalian
, and
S. A.
Derevyanko
, “
Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives
,”
Optica
4
,
307
322
(
2017
).
32.
S. I.
Muslih
,
O. P.
Agrawal
, and
D.
Baleanu
, “
A fractional Schr ödinger equation and its solution
,”
Int. J. Theor. Phys.
49
,
1746
1752
(
2010
).
33.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
Philadelphia, PA
,
2010
).
You do not currently have access to this content.