We study the asymptotic behavior of Lévy walks with rests, a generalization of classical wait-first and jump-first Lévy walks that incorporates additional resting periods. Our analysis focuses on the functional convergence of these processes in the Skorokhod topology. To achieve this, we first investigate the asymptotic properties of the modified waiting times with rests and then apply the continuous mapping theorem. Next, we analyze in detail the impact of the distribution of the resting times on the scaling limit in the scenarios of wait-first and jump-first Lévy walks.
REFERENCES
1.
M.
Donsker
, “Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems
,” Ann. Math. Stat.
23
, 277
–281
(1952
). 2.
P.
Becker-Kern
, M.
Meerschaert
, and H.
Scheffler
, “Limit theorems for coupled continuous time random walks
,” Ann. Probab.
32
, 730
–756
(2004
). 3.
M.
Bauer
and R.
Metzler
, “Generalized facilitated diffusion model for DNA-binding proteins with search and recognition states
,” Biophys. J.
102
, 2321
–2330
(2012
). 4.
A. G.
Cherstvy
and R.
Metzler
, “Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes
,” Phys. Chem. Chem. Phys.
15
, 20220
–20235
(2013
). 5.
V.
Zaburdaev
, S.
Denisov
, and J.
Klafter
, “Lévy walks
,” Rev. Mod. Phys.
87
, 483
–530
(2015
). 6.
M.
Magdziarz
, H.
Scheffler
, P.
Straka
, and P.
Żebrowski
, “Limit theorems and governing equations for Lévy walks
,” Stochastic Process. Appl.
125
, 4021
–4038
(2015
). 7.
M.
Magdziarz
and M.
Teuerle
, “Asymptotic properties and numerical simulation of multidimensional Lévy walks
,” Commun. Nonlinear Sci. Numer. Simul.
20
, 489
–505
(2015
). 8.
M.
Magdziarz
and W.
Szczotka
, “Lévy walks with rests: Long-time analysis
,” Phys. Rev. E
105
, 014114
(2022
). 9.
W.
Feller
, An Introduction to Probability Theory and Its Applications
(Wiley
, New York
, 1968
), Vol. I.10.
K.
Pearson
, “The problem of the random walk
,” Nature
72
, 294
(1905
). 11.
E. W.
Montroll
and G. H.
Weiss
, “Random walks on lattices. II
,” J. Math. Phys.
6
, 167
(1965
). 12.
J.
Klafter
and I. M.
Sokolov
, First Steps in Random Walks. From Tools to Applications
(Oxford University Press
, Oxford
, 2011
).13.
T.
Komorowski
and S.
Olla
, “Einstein relation for random walks in random environments
,” Stochastic Process. Appl.
115
, 1279
–1301
(2005
). 14.
R.
Metzler
and J.
Klafter
, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,” Phys. Rep.
339
, 1
–77
(2000
). 15.
H.
Scher
and E.
Montroll
, “Anomalous transit-time dispersion in amorphous solids
,” Phys. Rev. B
12
, 2455
–2477
(1975
). 16.
H.
Scher
et al., “The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times
,” Geophys. Res. Lett.
29
, 1061
, https://doi.org/10.1029/2001GL014123 (2002
). 17.
J.
Nelson
and R. E.
Chandler
, “Random walk models of charge transfer and transport in dye sensitized systems
,” Coord. Chem. Rev.
248
, 1181
(2004
). 18.
M.
Bologna
, P.
Grigolini
, and J.
Riccardi
, “Lévy diffusion as an effect of sporadic randomness
,” Phys. Rev. E
60
, 6435
(1999
). 19.
A. V.
Chechkin
, V. Y.
Gonchar
, and M.
Szydlowsky
, “Fractional kinetics for relaxation and superdiffusion in a magnetic field
,” Phys. Plasmas
9
, 78
(2002
). 20.
A.
Ott
et al., “Anomalous diffusion in ’living polymers’: A genuine Lévy flight?
” Phys. Rev. Lett.
65
, 2201
(1990
). 21.
M. A.
Lomholt
, T.
Ambjörnsson
, and R.
Metzler
, “Optimal target search on a fast-folding polymer chain with volume exchange
,” Phys. Rev. Lett.
95
, 260603
(2005
). 22.
T. H.
Solomon
and E. R.
Weeks
, “Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow
,” Phys. Rev. Lett.
71
, 3975
(1993
). 23.
W.
Wang
and E.
Barkai
, “Fractional advection-diffusion-asymmetry equation
,” Phys. Rev. Lett.
125
, 240606
(2020
). 24.
W.
Wang
and E.
Barkai
, “Fractional advection diffusion asymmetry equation, derivation, solution and application
,” J. Phys. A: Math. Theor.
57
, 035203
(2024
). 25.
J.
Klafter
, A.
Blumen
, and M.
Shlesinger
, “Stochastic pathway to anomalous diffusion
,” Phys. Rev. A
35
, 3081
–3085
(1987
). 26.
M.
Magdziarz
, W.
Szczotka
, and P.
Żebrowski
, “Langevin picture of Lévy walks and their extensions
,” J. Stat. Mech. Theor. Exp.
147
, 74
–96
(2012
).27.
M. F.
Shlesinger
, J.
Klafter
, and Y. M.
Wong
, “Random walks with infinite spatial and temporal moments
,” J. Stat. Mech. Theor. Exp.
27
, 499
–512
(1982
).28.
M.
Teuerle
, P.
Żebrowski
, and M.
Magdziarz
, “Multidimensional Lévy walk and its scaling limits
,” J. Phys. A: Math. Theor.
45
, 385002
(2012
). 29.
M.
Teuerle
, P.
Żebrowski
, and M.
Magdziarz
, “Scaling limits of overshooting Lévy walks
,” Acta Phys. Pol. B
43
, 1111
–1132
(2012
).30.
F.
Escande
and F.
Sattin
, “When can the Fokker-Planck equation describe anomalous or chaotic transport?
,” Phys. Rev. Lett.
99
, 185005
(2007
). 31.
M.
Magdziarz
and A.
Weron
, “Competition between subdiffusion and Lévy flights: A Monte Carlo approach
,” Phys. Rev. E
75
, 056702
(2007
). 32.
I. M.
Sokolov
, “Lévy flights from a continuous-time process
,” Phys. Rev. E
63
, 011104
(2000
). 33.
G.
Zumofen
, J.
Klafter
, and A.
Blumen
, “Lévy walks and propagators in intermittent chaotic systems
,” Phys. Rev. E
47
, 2183
(1993
). 34.
D.
Brockmann
, L.
Hufnagel
, and T.
Geisel
, “The scaling laws of human travel
,” Nature
439
, 462
–465
(2006
). 35.
M. C.
González
, C. A.
Hidalgo
, and A.-L.
Barabási
, “Understanding individual human mobility patterns
,” Nature
453
, 779
–782
(2008
).36.
D.
Brockmann
, Human Mobility and Spatial Disease Dynamics
(John Wiley & Sons, Ltd
, 2009
), Chap. 1, pp. 1
–24
.37.
B.
Dybiec
, “Random strategies of contact tracking
,” Phys. A
387
, 4863
–4870
(2008
). 38.
A.
Edwards
et al., “Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer
,” Nature
449
, 1044
–1048
(2007
). 39.
D.
Sims
et al., “Scaling laws of marine predator search behaviour
,” Nature
451
, 1098
–1102
(2008
). 40.
G. M.
Viswanathan
et al., “Optimizing the success of random searches
,” Nature
401
, 911
–914
(1999
). 41.
M.
Buchanan
, “Ecological modelling: The mathematical mirror to animal nature
,” Nature
453
, 714
–716
(2008
). 42.
G.
Ariel
et al., “Swarming bacteria migrate by Lévy walk
,” Nat. Commun.
6
, 8396
(2015
). 43.
M. S.
Song
, H. C.
Moon
, J. H.
Jeon
, and H. Y.
Park
, “Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk
,” Nat. Commun.
9
, 344
(2018
). 44.
V.
Zaburdaev
and K.
Chukbar
, “Enhanced superdiffusion and finite velocity of Lévy flights
,” J. Exp. Theor. Phys.
94
, 252
–259
(2002
). 45.
K. I.
Sato
, Lévy Processes and Infinitely Divisible Distributions
(Cambridge University Press
, Cambridge
, 1999
).46.
M.
Meerschaert
and H.
Sheffler
, Limit Distributions for Sums of Independent Random Vectors
(Wiley
, New York
, 2001
).47.
48.
49.
M.
Magdziarz
and T.
Żórawik
, “Limit properties of Lévy walks
,” J. Phys. A: Math. Theor.
53
, 504001
(2020
). 50.
B.
Gnedenko
and A.
Kolmogorov
, Limit Distributions for Sums of Independent Random Variables
(Addison-Wesley
, Cambridge
, 1954
).51.
C.
Stone
, “Weak convergence of stochastic processes defined on semi-infinite time intervals
,” Proc. Am. Math. Soc.
14
, 694
–696
(1963
). 52.
P.
Straka
and B.
Henry
, “Lagging/leading coupled continuous time random walks, renewal times and their joint limits
,” Stochastic Process. Appl.
121
, 324
–336
(2011
). © 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.