This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including Shilnikov–Hopf, Belyakov, Bautin, and Bogdanov–Takens points, which play a pivotal role in organizing the complex bifurcation structure of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast–slow dynamics allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling the intricate dynamical and bifurcation structures present in the system.

1.
T. R.
Chay
, “
Chaos in a three-variable model of an excitable cell
,”
Physica D
16
(
2
),
232
234
(
1985
).
2.
Y. S.
Fan
and
A. V.
Holden
, “
Bifurcations bursting, chaos and crises in the Rose-Hindmarsh model for neuronal activity
,”
Chaos Soliton. Fract.
3
,
439
449
(
1995
).
3.
D.
Terman
, “
Chaotic spikes arising from a model of bursting in excitable membranes
,”
SIAM J. Appl. Math.
51
(
5
),
1418
1450
(
1996
).
4.
H. A.
Lechner
,
D. A.
Baxter
,
J. W.
Clark
, and
J. H.
Byrne
, “
Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia
,”
J. Neurophysiol.
75
(
2
),
957
962
(
1996
).
5.
A. L.
Shilnikov
and
G.
Cymbaluyk
, “
Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper
,”
Reg. Chaot. Dyn.
3
(
9
),
281
297
(
2004
).
6.
P.
Channell
,
G.
Cymbalyuk
, and
A. L.
Shilnikov
, “
Origin of bursting through homoclinic spike adding in a neuron model
,”
Phys. Rev. Lett.
98
,
13410
(
2007
).
7.
A. L.
Shilnikov
and
M. L.
Kolomiets
, “
Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. Tutorial
,”
Int. J. Bifurcation Chaos
18
(
8
),
1
27
(
2008
).
8.
A. B.
Neiman
,
K.
Dierkes
,
B.
Lindner
,
L.
Han
, and
A. L.
Shilnikov
, “
Spontaneous voltage oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair cells
,”
J. Math. Neurosci.
1
(
1
),
11
(
2011
).
9.
J.
Wojcik
and
A. L.
Shilnikov
, “
Voltage interval mappings for dynamics transitions in elliptic bursters
,”
Physica D
240
,
1164
1180
(
2011
).
10.
K.
Pusuluri
and
A. L.
Shilnikov
, “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific Connect, 2019), pp. 97–102.
11.
K.
Pusuluri
and
A. L.
Shilnikov
, “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific, Singapore, 2019), pp. 97–102.
12.
K.
Pusuluri
,
H.
Ju
, and
A. L.
Shilnikov
, “Chaotic dynamics in neural systems,” in Synergetics. Encyclopedia of Complexity and Systems Science Series, edited by A. Hutt and A. H. Haken (Springer, New York, NY, 2020).
13.
A.
Sakurai
and
P. S.
Katz
, “
Phylogenetic and individual variation in gastropod central pattern generators
,”
J. Comparative Physiol. A
201
(
9
),
829
839
(
2015
).
14.
A.
Sakurai
and
P. S.
Katz
, “
The central pattern generator underlying swimming in Dendronotus iris: A simple half-center network oscillator with a twist
,”
J. Neurophysiol.
116
(
4
),
1728
1742
(
2016
).
15.
G.
Sciamanna
and
C. W.
Wilson
, “
The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons
,”
J. Neurophysiol.
106
,
2936
2949
(
2011
).
16.
S. N.
Housley
,
P.
Nardelli
,
R. K.
Powers
,
M. M.
Rich
, and
T. C.
Cope
, “
Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy
,”
Exp. Neurol.
331
,
113354
(
2020
).
17.
M. M.
Rich
,
S. N.
Housley
,
P.
Nardelli
,
R. K.
Powers
, and
T. C.
Cope
, “
Imbalanced subthreshold currents following sepsis and chemotherapy: A shared mechanism offering a new therapeutic target?
Neuroscientist
28
(
2
),
103
120
(
2022
).
18.
A. M.
Lyapunov
, “
The general problem of the stability of motion
,”
Int. J. Control
55
(
3
),
531
534
(
1992
).
19.
L. P.
Shilnikov
,
A. L.
Shilnikov
,
D. V.
Turaev
, and
L. O.
Chua
,
Methods of Qualitative Theory in Nonlinear Dynamics
(
World Scientific
,
Singapore
,
1998
), Vols. 1 and 2.
20.
A. L.
Shilnikov
and
M. L.
Kolomiets
, “
Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial
,”
J. Bifurcation Chaos
18
(
7
),
1
32
(
2008
).
21.
D.
Golomb
,
K.
Donner
,
L.
Shacham
,
D.
Shlosberg
,
Y.
Amitai
, and
D.
Hansel
, “
Mechanisms of firing patterns in fast-spiking cortical interneurons
,”
PLoS Comput. Biol.
3
(
8
),
e156
(
2007
).
22.
P.
Channell
,
I.
Fuwape
,
A. B.
Neiman
, and
A. L.
Shilnikov
, “
Variability of bursting patterns in a neuron model in the presence of noise
,”
J. Comput. Neurosci.
27
,
527
542
(
2009
).
23.
A. L.
Shilnikov
,
L. P.
Shilnikov
, and
D. V.
Turaev
, “
Blue sky catastrophe in singularly perturbed systems
,”
Moscow Math. J.
5
(
1
),
205
211
(
2005
).
24.
L. P.
Shilnikov
, “
A case of the existence of a denumerable set of periodic motions
,”
Soviet Math. Doklady
6
,
163
166
(
1965
).
25.
L. P.
Shilnikov
, “
The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,”
Soviet Math. Doklady
8
(
1
),
54
58
(
1967
).
26.
L. P.
Shilnikov
, “
A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type
,”
Math. USSR Sbornik
10
,
91
102
(
1970
).
27.
L. P.
Shilnikov
and
A. L.
Shilnikov
, “
Shilnikov bifurcation
,”
Scholarpedia
2
(
8
),
1981
(
2007
).
28.
V. S.
Afraimovich
,
S. V.
Gonchenko
,
L. M.
Lerman
,
A. L.
Shilnikov
, and
D. V.
Turaev
, “
Scientific heritage of L. P. Shilnikov
,”
Regul. Chaotic Dyn.
19
(
4
),
435
460
(
2014
).
29.
V. S.
Afraimovich
,
L. A.
Belyakov
,
S. V.
Gonchenko
,
L. M.
Lerman
,
A. D.
Morozov
,
D.
Turaev
, and
A. L.
Shilnikov
,
Selected Scientific Works of L. P. Shilnikov
(
UNN
,
Nizhny Novgorod
,
2017
).
30.
U.
Feudel
,
A.
Neiman
,
X.
Pei
,
W.
Wojtenek
,
H.
Braun
,
M.
Huber
, and
F.
Moss
, “
Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons
,”
Chaos
10
(
1
),
231
239
(
2000
).
31.
J. M.
Cortes
,
M.
Desroches
,
S.
Rodrigues
, and
T. J.
Sejnowski
, “
Short-term synaptic plasticity in the deterministic Tsodyks-Markram model leads to unpredictable network dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
41
),
16610
16615
(
2013
).
32.
L. A.
Belyakov
, “
A case of the generation of a periodic motion with homoclinic curves
,”
Math. Notes Acad. Sci. USSR
15
,
336
341
(
1976
).
33.
A. L.
Shilnikov
and
G.
Cymbalyuk
, “
Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited review
,”
Regul. Chaotic Dyn.
3
(
9
),
281
297
(
2004
).
34.
A. L.
Shilnikov
, “
Complete dynamical analysis of an interneuron model
,”
J. Nonlinear Dyn.
68
(
3
),
305
328
(
2012
).
35.
L. A.
Belyakov
, “
Bifurcation set in a system with homoclinic saddle curve
,”
Math. Notes Acad. Sci. USSR
28
,
910
916
(
1980
).
36.
D. V.
Turaev
and
L. P.
Shilnikov
, “
Blue sky catastrophes
,”
Dokl. Math.
51
,
404
407
(
1995
).
37.
N.
Gavrilov
and
A. L.
Shilnikov
, “Examples of blue sky catastrophe,” in Methods of Qualitative Theory of Differential Equations and Related Topics, AMS Transl. Series II, 200 (American Mathematical Society, 2000), pp. 165–188.
38.
A. L.
Shilnikov
and
D. V.
Turaev
, “
Blue sky catastrophe
,”
Scholarpedia
2
(
8
),
1889
(
2007
).
39.
A. L.
Shilnikov
and
G.
Cymbalyuk
, “
Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe
,”
Phys. Rev. Lett.
94
(
4
),
048101
(
2005
).
40.
R. E.
Plant
and
M.
Kim
, “
On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell
,”
Math. Biosci.
26
,
357
375
(
1975
).
41.
R. E.
Plant
and
M.
Kim
, “
Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations
,”
Biophys. J.
16
,
227
244
(
1976
).
42.
R. E.
Plant
, “
Bifurcation and resonance in a model for bursting nerve cells
,”
J. Math. Biol.
11
,
15
32
(
1981
).
43.
A. R.
Rittenhouse
and
C. H.
Price
, “
Peripheral axons of the parabolic burster neuron R15
,”
Brain Res.
333
,
330
335
(
1985
).
44.
E. S.
Levitan
and
I. B.
Levitan
, “
Serotonin acting via cyclic amp enhances both the hyper-polarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15
,”
J. Neurosci.
8
,
1152
1161
(
1988
).
45.
J.
Rinzel
and
Y. S.
Lee
, “
Dissection of a model for neuronal parabolic bursting
,”
J. Math. Biol.
25
(
6
),
653
675
(
1987
).
46.
C. C.
Canavier
,
J. W.
Clark
, and
J. H.
Byrne
, “
Simulation of the bursting activity of neuron R15 in Aplysia: Role of ionic currents, calcium balance, and modulatory transmitters
,”
J Neurophysiol.
66
(
6
),
2107
2124
(
1991
).
47.
R.
Butera
, “
Multirhythmic bursting
,”
Chaos
8
(
1
),
274
284
(
1998
).
48.
D.
Alaçam
and
A. L.
Shilnikov
, “
Making a swim central pattern generator out of latent parabolic bursters
,”
Int. J. Bifurcation Chaos
25
(
07
),
1540003
(
2015
).
49.
J.
Scully
,
J.
Bourahmah
,
D.
Bloom
, and
A. L.
Shilnikov
, “
Pairing cellular and synaptic dynamics into building blocks of rhythmic neural circuits. A Tutorial
,”
Front. Netw. Physiol.
4
,
1397151
(
2024
).
50.
L. P.
Shilnikov
and
A. L.
Shilnikov
, “
Shilnikov saddle-node bifurcation
,”
Scholarpedia
3
(
4
),
4789
(
2008
).
51.
L. P.
Shilnikov
, “
On Poincaré-Birkhoff problem
,”
Math. USSR-Sb.
3
(
3
),
353
371
(
1967
).
52.
N. K.
Gavrilov
and
L. P.
Shilnikov
, “
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I
,”
Math. USSR-Sb.
17
(
4
),
467
485
(
1972
).
53.
N. K.
Gavrilov
and
L. P.
Shilnikov
, “
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II
,”
Math. USSR-Sb.
19
(
1
),
139
156
(
1973
).
54.
W.
Govaerts
,
Y. A.
Kuznetsov
, and
B.
Sautois
, “
MATCONT: Continuation toolbox for ODEs in Matlab
,”
Scholarpedia
1
(
9
),
1375
(
2006
).
55.
W.
Govaerts
,
Y. A.
Kuznetsov
,
H. G. E.
Meijer
,
B.
Al-Hdaibat
,
V.
De Witte
,
A.
Dhooge
,
W.
Mestrom
,
N.
Neirynck
,
A. M.
Riet
, and
B.
Sautois
, “MATCONT: Continuation toolbox for ODEs in Matlab,” Preprint (Universiteit Gent, Utrecht University, and University of Twente, 2019).
56.
G.
Datseris
, “
DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics
,”
J. Open Source Softw.
3
(
23
),
598
(
2018
).
57.
C.
Rackauckas
and
Q.
Nie
, “
DifferentialEquations.jl—A performant and feature-rich ecosystem for solving differential equations in Julia
,”
J. Open Res. Softw.
5
(
1
),
15
(
2017
).
58.
E.
Mosekilde
,
Y.
Maistrenko
, and
D.
Postnov
, “
Bifurcation structure of a model of bursting pancreatic cells
,”
BioSystems
63
,
3
13
(
2001
).
59.
A.
Lempel
and
J.
Ziv
, “
On the complexity of finite sequences
,”
IEEE Trans. Inf. Theory
22
,
75
81
(
1976
).
60.
S.
Malykh
,
Y.
Bakhanova
,
A.
Kazakov
,
K.
Pusuluri
, and
A. L.
Shilnikov
, “
Homoclinic chaos in the Rössler model
,”
J. Chaos
30
,
113126
(
2020
).
61.
T.
Xing
,
L.
Pusuluri
, and
A. L.
Shilnikov
, “
Ordered intricacy of Shilnikov saddle-focus homoclinics in symmetric systems
,”
J. Chaos
31
,
073143
(
2021
).
62.
C.
Hinsley
,
J.
Scully
, and
A. L.
Shilnikov
, “
Bifurcation structure of interval maps with orbits homoclinic to a saddle-focus
,”
Ukr. Math. J.
75
(
12
),
1608
1626
(
2023
).
63.
P.
Glendenning
and
C.
Sparrow
, “
Local and global behavior near homoclinic orbits
,”
J. Stat. Phys.
35
,
645
696
(
1984
).
64.
M. T.
Huber
,
H. A.
Brawn
, and
J. C.
Krieg
, “
Consequences of deterministic and random dynamics for the course of affective disorders
,”
Biol. Psychiatry
46
,
256
262
(
1999
).
65.
J. S.
Birman
and
R. F.
Williams
, “
Knotted periodic orbits in dynamical systems I: Lorenz’s equations
,”
Topology
22
(
1
),
47
82
(
1983
).
66.
J. L.
Kaplan
and
J. A.
Yorke
, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points, Lecture Notes in Mathematics Vol. 730 (Springer, Berlin, 1979).
67.
R.
Gilmore
and
M.
Lefranc
,
The Topology of Chaos: Alice in Stretch and Squeezeland
(
John Wiley & Sons, Inc.
,
2003
).
68.
C.
Rackauckas
and
Q.
Nie
, “
DifferentialEquations.jl—A performant and feature-rich ecosystem for solving differential equations in Julia
,”
J. Open Source Softw.
5
(
1
),
15
(
2017
).
69.
R.
Gilmore
,
X.
Pei
, and
F.
Moss
, “
Topological analysis of chaos in neural spike train bursts
,”
Chaos
9
(
3
),
812
817
(
1999
).
70.
J.
Used
and
J. C.
Martín
, “
Reverse horseshoe and spiral templates in an erbium-doped fiber laser
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
79
(
4.2
),
046213
(
2009
).
71.
R. W.
Ghrist
,
P. J.
Holmes
, and
M. C.
Sullivan
, Knots and Links in Three-Dimensional Flows, Lecture Notes in Mathematics Vol. 1654 (Springer, Berlin, 1997).
72.
J.
Milnor
and
W.
Thurston
, “On iterated maps of the interval,” in
Dynamical Systems
, Lecture Notes in Mathematics Vol. 1342 (Springer, Berlin, 1988).
73.
J. M.
Amigó
,
J.
Szczepánski
,
E.
Wajnryb
, and
M. V.
Sanchez-Vives
, “
Estimating the entropy rate of spike trains via Lempel-Ziv complexity
,”
Neural Comput.
16
(
4
),
717
736
(
2004
).
74.
L. P.
Shilnikov
and
A. L.
Shilnikov
, “
Shilnikov bifurcation
,”
Scholarpedia
2
(
8
),
1891
(
2007
).
75.
D.
Li
and
D.
Turaev
, “
Bifurcations and robust heterodimensional dynamics in coindex-1 cycles
,”
Invent. Math.
236
,
1
92
(
2024
).
76.
C.
Hinsley
,
J. J.
Scully
and
D.
Bloom
, (2025). “
PlantChaos
,”
GitHub
. https://github.com/hinsley/PlantChaosq
You do not currently have access to this content.