The movement of a polymer is modeled by Brownian motion accompanied with a fluctuating diffusion coefficient when the polymer is in contact with a chemostatted monomer bath triggering the chain polymerization, which is called a diffusing diffusivity (DD) model. In this paper, we extend the DD model from three dimensional Euclidean space to a two dimensional spherical surface. The DD model on the spherical surface is described by a coupling Langevin system in the directions of longitude and latitude, while the diffusion coefficient is characterized by the birth and death chain. Then, the Fokker–Planck and Feynman–Kac equations for the DD model on the spherical surface, respectively, governing the probability density functions (PDFs) of the two statistical observables, position and functional, are derived. Finally, we use two ways to calculate the PDFs of some statistical observables, i.e., applying a Monte Carlo method to simulate the DD model and a spectral method to solve the Fokker–Planck and Feynman–Kac equations. In fact, the unification of the numerical results of the two ways also confirms the correctness of the built equations.

1.
R.
Brown
, “
Mikroskopische beobachtungen über die im pollen der pflanzen enthaltenen partikeln, und über das allgemeine vorkommen activer moleüle in organischen und unorganischen körpern
,”
Ann. Phys.
90
,
294
313
(
1828
).
2.
R.
Brown
, “
Additional remarks on active molecules
,”
Philos. Mag.
6
,
161
166
(
1829
).
3.
A.
Einstein
, “
über die von der molekularkinetischen theorieder wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
4.
M.
Smoluchowski
, “
Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen
,”
Ann. Phys.
326
,
756
780
(
1906
).
5.
P.
Langevin
, “
Sur la théorie du mouvement Brownien
,”
C.R. Acad. Sci.
146
,
530
533
(
1908
) See https://jcmarot.com/wp-content/uploads/2017/01/document-de-travail.pdf.
6.
J.
Aguirre
and
T.
Murphy
, “
Brownian motion of N interacting particles. II. Hydrodynamical evaluation of the diffusion tensor matrix
,”
J. Chem. Phys.
59
,
1833
1840
(
1973
).
7.
G.
Batchelor
, “
Brownian diffusion of particles with hydrodynamic interaction
,”
J. Fluid Mech.
74
,
1
29
(
1976
).
8.
E.
Frey
and
K.
Kroy
, “
Brownian motion: A paradigm of soft matter and biological physics
,”
Ann. Phys.
517
,
20
50
(
2005
).
9.
I.
Nordlund
, “
A new determination of Avogadro’s number from Brownian motion of small mercury spherules
,”
Z. Phys. Chem.
87
,
40
(
1914
).
10.
A.
Caspi
,
R.
Granek
, and
M.
Elbaum
, “
Enhanced diffusion in dctive intracellular transport
,”
Phys. Rev. Lett.
85
,
5655
(
2000
).
11.
I.
Golding
and
E.
Cox
, “
Physical nature of bacterial cytoplasm
,”
Phys. Rev. Lett.
96
,
098102
(
2006
).
12.
J.
Shin
,
A.
Cherstvy
, and
R.
Metzler
, “
Kinetics of polymer looping with macromolecular crowding: Effects of volume fraction and crowder size
,”
Soft Matter
11
,
472
488
(
2015
).
13.
J.-P.
Bouchaud
and
A.
Georges
, “
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,”
Phys. Rev.
195
,
127–193
(
1990
).
14.
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
15.
J.
Reverey
,
J.-H.
Jeon
,
H.
Bao
,
M.
Leippe
,
R.
Metzler
, and
C.
Selhuber-Unkel
, “
Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii
,”
Sci. Rep.
5
,
11690
(
2015
).
16.
Y.
Chen
,
X.
Wang
, and
W.
Deng
, “
Localization and ballistic diffusion for the tempered fractional Brownian-Langevin motion
,”
J. Stat. Phys.
169
,
18
37
(
2017
).
17.
W.
Coffey
,
Y.
Kalmykov
, and
J.
Waldron
,
The Langevin Equation
(
World Scientific
,
Singapore
,
2004
).
18.
H.
Fogedby
, “
Langevin equations for continuous time Lévy flights
,”
Phys. Rev. E
50
,
1657
1660
(
1994
).
19.
R.
Metzler
and
J.
Klafter
, “
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
,”
J. Phys. A: Math. Theor.
37
,
R161
(
2004
).
20.
L.
Turgeman
,
S.
Carmi
, and
E.
Barkai
, “
Fractional Feynman-Kac equation for non-Brownian functionals
,”
Phys. Rev. Lett.
103
,
190201
(
2009
).
21.
Y.
Chen
,
X.
Wang
, and
W.
Deng
, “
Langevin dynamics for a Lévy walk with memory
,”
Phys. Rev. E
99
,
012135
(
2019
).
22.
A.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I.
Sokolov
, “
Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities
,”
Phys. Rev. X
7
,
021002
(
2017
).
23.
M.
Magdziarz
,
A.
Weron
, and
K.
Weron
, “
Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation
,”
Phys. Rev. E
75
,
016708
(
2007
).
24.
H.
Risken
,
The Fokker-Planck Equation
(
Springer-Verlag
,
Berlin
,
1989
).
25.
A.
Chechkin
,
V.
Gonchar
,
J.
Klafter
, and
R.
Metzler
,
Fundamentals of Lévy Flight Processes, Fractals, Diffusion, and Relaxation in Disordered Complex Systems
, Advances in Chemical Physics, Part B, 6th ed. (
Wiley
,
New York
,
2006
).
26.
S.
Carmi
,
L.
Turgeman
, and
E.
Barkai
, “
On distributions of functionals of anomalous diffusion paths
,”
J. Stat. Phys.
141
,
1071
1092
(
2010
).
27.
S.
Carmi
and
E.
Barkai
, “
Fractional Feynman-Kac equation for weak ergodicity breaking
,”
Phys. Rev. E
84
,
061104
(
2011
).
28.
M.
Kac
, “
On distributions of certain Wiener functionals
,”
Trans. Am. Math. Soc.
65
,
1
13
(
1949
).
29.
R.
Hou
and
W.
Deng
, “
Feynman-Kac equations for reaction and diffusion processes
,”
J. Phys. A: Math. Theor.
51
,
155001
(
2018
).
30.
E.
Weeks
,
J.
Crocker
,
A.
Levitt
,
A.
Schofield
, and
D.
Weitz
, “
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
,”
Science
287
,
627
631
(
2000
).
31.
S.
Hapca
,
J.
Crawford
, and
I.
Young
, “
Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level
,”
J. R. Soc. Interface
6
,
111
122
(
2009
).
32.
B.
Wang
,
J.
Kuo
,
S.
Bae
, and
S.
Granick
, “
When Brownian diffusion is not Gaussian
,”
Nat. Mater.
11
,
481
485
(
2012
).
33.
B.
Wang
,
S.
Anthony
,
S.
Bae
, and
S.
Granick
, “
Anomalous yet Brownian
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
15160
15164
(
2009
).
34.
J.
Guan
,
B.
Wang
, and
S.
Granick
, “
Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion
,”
ACS Nano
8
,
3331
3336
(
2014
).
35.
K.
He
,
F.
Khorasani
,
S.
Retterer
,
D.
Thomas
,
J.
Conrad
, and
R.
Krishnamoorti
, “
Diffusive dynamics of nanoparticles in arrays of nanoposts
,”
ACS Nano
7
,
5122
5130
(
2013
).
36.
S. B.
Kwon
and
G. A.
Yethiraj
, “
Dynamics in crowded environments: Is non-Gaussian Brownian diffusion normal?
J. Phys. Chem. B
118
,
8128
8134
(
2014
).
37.
G.
Phillies
, “
In complex fluids the Gaussian diffusion approximation is generally invalid
,”
Soft Matter
11
,
580
586
(
2015
).
38.
K.
Sakamoto
,
T.
Akimoto
,
M.
Muramatsu
,
M.
Sansom
,
R.
Metzler
, and
E.
Yamamoto
, “
Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity
,”
PNAS Nexus
2
,
pgad258
(
2023
).
39.
E.
Yamamoto
,
T.
Akimoto
,
A.
Mitsutake
, and
R.
Metzler
, “
Universal relation between instantaneous diffusivity and radius of gyration of proteins in aqueous solution
,”
Phys. Rev. Lett.
126
,
128101
(
2021
).
40.
M.
Chubynsky
and
G.
Slater
, “
Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion
,”
Phys. Rev. Lett.
113
,
098302
(
2014
).
41.
J.
Miotto
,
S.
Pigolotti
,
A.
Chechkin
, and
S.
Roldán-Vargas
, “
Length scales in Brownian yet non-Gaussian dynamics
,”
Phys. Rev. X
11
,
031002
(
2021
).
42.
C.
Beck
, “
Dynamical foundations of nonextensive statistical mechanics
,”
Phys. Rev. Lett.
87
,
180601
(
2001
).
43.
C.
Beck
and
E.
Cohen
, “
Superstatistics
,”
Physica A
322
,
267
275
(
2003
).
44.
E.
Barkai
and
S.
Burov
, “
Packets of diffusing particles exhibit universal exponential tails
,”
Phys. Rev. Lett.
124
,
060603
(
2020
).
45.
F.
Baldovin
,
E.
Orlandini
, and
F.
Seno
, “
Polymerization induces non-Gaussian diffusion
,”
Front. Phys.
7
,
124
(
2019
).
46.
S.
Nampoothiri
,
E.
Orlandini
,
F.
Seno
, and
F.
Baldovin
, “
Polymers critical point originates Brownian non-Gaussian diffusion
,”
Phys. Rev. E
104
,
L062501
(
2021
).
47.
F.
Nampoothiri
,
E.
Orlandini
,
F.
Seno
, and
F.
Baldovin
, “
Brownian non-Gaussian polymer diffusion and queuing theory in the mean-field limit
,”
New J. Phys.
24
,
023003
(
2022
).
48.
M.
Doi
and
S.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1992
).
49.
T.
Zhou
,
H.
Wang
, and
W.
Deng
, “
Feynman-Kac equation for Brownian non-Gaussian polymer diffusion
,”
J. Phys. A: Math. Theor.
57
,
285001
(
2024
).
50.
J.
Shin
,
A.
Cherstvy
,
W.
Kim
, and
R.
Metzler
, “
Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles
,”
New J. Phys.
17
,
113008
(
2015
).
51.
A.
Göndör
and
R.
Ohlsson
, “
Chromosome crosstalk in three dimensions
,”
Nature
461
,
212
217
(
2009
).
52.
A.
Němečková
,
V.
Koláčková
, J. Vrána,
J.
Doležel
, and
E.
Hřibová
, “
DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei
,”
J. Exp. Bot.
71
,
6262
6272
(
2020
).
53.
E.
Yamamoto
,
T.
Akimoto
,
A.
Kalli
,
K.
Yasuok
, and
M.
Sansom
, “
Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity
,”
Sci. Adv.
3
,
e1601871
(
2017
).
54.
S.
Aiba
,
S.
Kitai
, and
N.
Ishida
, “
Shape and size of yeast cell
,”
J. Gen. Appl. Microbiol.
8
,
99
102
(
1962
).
55.
S.
Cushman
, “
Structure-function relationships in the adipose cell: I. Ultrastructure of the isolated adipose cell
,”
J. Cell Biol.
46
,
326
341
(
1970
).
56.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgan
,
M.
Raff
,
K.
Roberts
,
P.
Walter
,
J.
Wilson
, and
T.
Hunt
,
Molecular Biology of the Cell
, 6th ed. (
Garland Science
,
New York
,
2014
).
57.
R.
Kusters
and
C.
Storm
, “
Impact of morphology on diffusive dynamics on curved surfaces
,”
Phys. Rev. E
89
,
032723
(
2014
).
58.
A.
Noske
,
A.
Costin
,
G.
Morgan
, and
B.
Marsh
, “
Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets
,”
J. Struct. Biol.
161
,
298
313
(
2008
).
59.
R.
Peters
and
R.
Cherry
, “
Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: Experimental test of the Saffman-Delbrück equations
,”
Proc. Natl. Acad. Sci. U.S.A.
79
,
4317
4321
(
1982
).
60.
P.
Saffman
and
M.
Delbrück
, “
Brownian motion in biological membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
72
,
3111
3113
(
1975
).
61.
I.
Nayak
,
D.
Das
, and
A.
Nandi
, “
Comparison of mechanisms of kinetochore capture with varying number of spindle microtubules
,”
Phys. Rev. Res.
2
,
013114
(
2020
).
62.
P.
Tran
,
T.
Blanpied
, and
P.
Atzberger
, “
Protein drift-diffusion dynamics and phase separation in curved cell membranes and dendritic spines: Hybrid discrete-continuum methods
,”
Phys. Rev. E
106
,
044402
(
2022
).
63.
M.
Grothaus
and
P.
Stilgenbauer
, “
Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology
,”
Stoch. Dyn.
13
,
1350001
(
2013
).
64.
M.
Grothaus
,
A.
Klar
,
J.
Maringer
,
P.
Stilgenbauer
, and
R.
Wegener
, “
Application of a three-dimensional fiber lay-down model to non-woven production processes
,”
J. Math. Ind.
4
,
4
(
2014
).
65.
M.
Kozlov
and
J.
Taraska
, “
Generation of nanoscopic membrane curvature for membrane trafficking
,”
Nat. Rev. Mol. Cell Biol.
24
,
63
78
(
2023
).
66.
R.
Sadhu
,
S.
Barger
,
S.
Penic̆
,
A.
Iglič
,
M.
Krendel
,
N.
Gauthier
, and
N.
Gov
, “
A theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces
,”
Soft Matter
19
,
31
43
(
2023
).
67.
D.
Boal
,
Mechanics of the Cell
(
Cambridge University Press
,
Cambridge
,
2012
).
68.
S.
Karlin
and
J.
McGregor
, “
The classification of birth and death processes
,”
Trans. Am. Math. Soc.
86
,
366
400
(
1957
).
69.
C.
Gardiner
,
Handbook of Stochastic Processes
(
Springer-Verlag
,
Berlin
,
1985
).
70.
K.
Yosida
, “
Brownian motion on the surface of the 3-sphere
,”
Ann. Math. Stat.
20
,
292
296
(
1949
).
71.
S.
Majumdar
, “
Brownian functionals in physics and computer science
,”
Curr. Sci.
89
,
2076
2092
(
2005
).
72.
M.
Matzuk
and
D.
Lamb
, “
The biology of infertility: Research advances and clinical challenges
,”
Nat. Med.
14
,
1197
1213
(
2008
).
73.
K. J.
Mengerink
and
V.
Vacquier
, “
Glycobiology of sperm-egg interactions in deuterostomes
,”
Glycobiology
11
,
37R
43R
(
2001
).
74.
V.
Sposini
,
S.
Nampoothiri
,
A.
Chechkin
,
E.
Orlandini
,
F.
Seno
, and
F.
Baldovin
, “
Being heterogeneous is advantageous: Extreme Brownian non-Gaussian searches
,”
Phys. Rev. Lett.
132
,
117101
(
2024
).
75.
V.
Sposini
,
S.
Nampoothiri
,
A.
Chechkin
,
E.
Orlandini
,
F.
Seno
, and
F.
Baldovin
, “
Being heterogeneous is disadvantageous: Brownian non-Gaussian searches
,”
Phys. Rev. E
109
,
034120
(
2024
).
76.
M.
Delarue
,
G.
Brittingham
,
S.
Pfeffer
,
I.
Surovtsev
,
S.
Pinglay
,
K.
Kennedy
,
M.
Schaffer
,
J.
Gutierrez
,
D.
Sang
,
G.
Poterewicz
,
J.
Chung
,
J.
Plitzko
,
J.
Groves
,
C.
Jacobs-Wagner
,
B.
Engel
, and
L.
Holt
, “
mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding
,”
Cell
174
,
338
349
(
2018
).
77.
A.
Mahapatra
,
D.
Saintillan
, and
P.
Rangamani
, “
Curvature-driven feedback on aggregation-diffusion of proteins in lipid bilayers
,”
Soft Matter
17
,
8373
8386
(
2021
).
78.
T. A.
Waigh
and
N.
Korabel
, “
Heterogeneous anomalous transport in cellular and molecular biology
,”
Rep. Prog. Phys.
86
,
126601
(
2023
).
79.
T. P.
Li
,
Y.
Song
,
H.
MacGillavry
,
T.
Blanpied
, and
S.
Raghavachari
, “
Protein crowding within the postsynaptic density can impede the escape of membrane proteins
,”
J. Neurosci.
36
,
4276
4295
(
2016
).
80.
A.
Lang
and
C.
Schwab
, “
Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations
,”
Ann. Appl. Probab.
25
,
3047
3094
(
2015
).
81.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme
,”
J. Comput. Phys.
14
,
361
370
(
1974
).
82.
B.
Øksendal
,
Stochastic Differential Equations—An Introduction with Applications
, 6th ed. (
Springer-Verlag
,
New York
,
2005
).
83.
S.
Ethier
and
T.
Kurtz
,
Markov Processes—Characterization and Convergence
(
John Wiley & Sons
,
Hoboken, NJ
,
1986
).
84.
D.
Stroock
and
S.
Varadhan
, “
Diffusion processes with continuous coefficients, I
,”
Commun. Pure Appl. Math.
22
,
345
400
(
1969
).
85.
D.
Revuz
and
M.
Yor
,
Continuous Martingales and Brownian Motion
, 2nd ed. (
Springer
,
Berlin
,
1994
).
86.
T.
Yamada
and
S.
Watanabe
, “
On the uniqueness of solutions of stochastic differential equations
,”
J. Math. Kyoto Univ.
11
,
155
167
(
1971
).
You do not currently have access to this content.