We study the dynamics of a single inertial run-and-tumble particle on a straight line. The motion of this particle is characterized by two intrinsic timescales, namely, an inertial and an active timescale. We show that interplay of these two times-scales leads to the emergence of four distinct regimes, characterized by different dynamical behavior of mean-squared displacement and survival probability. We analytically compute the position distributions in these regimes when the two timescales are well separated. We show that in the large-time limit, the distribution has a large deviation form and compute the corresponding large deviation function analytically. We also find the persistence exponents in the different regimes theoretically. All our results are supported with numerical simulations.

1.
O.
Dauchot
and
V.
Démery
,
Phys. Rev. Lett.
122
,
068002
(
2019
).
2.
A.
Cavagna
and
I.
Giardina
,
Annu. Rev. Condens. Matter Phys.
5
,
183
(
2014
).
3.
O.
Feinerman
,
I.
Pinkoviezky
,
A.
Gelblum
,
E.
Fonio
, and
N. S.
Gov
,
Nat. Phys.
14
,
683
(
2018
).
4.
D. S.
Pavlov
and
A. O.
Kasumyan
,
J. Ichthyol.
40
,
S163
(
2000
).
5.
H.
Mukundarajan
,
T. C.
Bardon
,
D. H.
Kim
, and
M.
Prakash
,
J. Exp. Biol.
219
,
752
(
2016
).
6.
Janus Particle Synthesis, Self-assembly and Applications, edited by S. Jiang and S. Granick (Royal Society of Chemistry, 2012).
7.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
8.
A.
Walther
and
A. H.
Muller
,
Chem. Rev.
113
,
5194
(
2013
).
9.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
,
Annu. Rev. Biomed.
12
,
55
(
2010
).
10.
J. R.
Howse
,
R. A.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
11.
U.
Basu
,
S. N.
Majumdar
,
A.
Rosso
, and
G.
Schehr
,
Phys. Rev. E
98
,
062121
(
2018
).
12.
J.
Tailleur
and
M. E.
Cates
,
Phys. Rev. Lett.
100
,
218103
(
2008
).
13.
K.
Malakar
,
V.
Jemseena
,
A.
Kundu
,
K. V.
Kumar
,
S.
Sabhapandit
,
S. N.
Majumdar
,
S.
Redner
, and
A.
Dhar
,
J. Stat. Mech.
2018
,
043215
(
2018
).
15.
D.
Martin
,
J.
O’Byrne
,
M. E.
Cates
,
É.
Fodor
,
C.
Nardini
,
J.
Tailleur
, and
F.
Van Wijland
,
Phys. Rev. E
103
,
032607
(
2021
).
16.
H.
Löwen
,
J. Chem. Phys.
152
,
040901
(
2020
).
17.
S.
Mandal
,
B.
Liebchen
, and
H.
Löwen
,
Phys. Rev. Lett.
123
,
228001
(
2019
).
18.
J.
Su
,
H.
Jiang
, and
Z.
Hou
,
New J. Phys.
23
,
013005
(
2021
).
19.
G.
Negro
,
C. B.
Caporusso
,
P.
Digregorio
,
G.
Gonnella
,
A.
Lamura
, and
A.
Suma
,
Eur. Phys. J. E
45
,
75
(
2022
).
20.
S.
De Karmakar
and
R.
Ganesh
,
Phys. Rev. E
101
,
032121
(
2020
).
21.
J.-J.
Liao
,
F.-J.
Lin
, and
B.-Q.
Ai
,
Physica A
582
,
126251
(
2021
).
22.
U. M. B.
Marconi
,
L.
Caprini
, and
A.
Puglisi
,
New J. Phys.
23
,
103024
(
2021
).
23.
L.
Caprini
,
C.
Maggi
, and
U.
Marini Bettolo Marconi
,
J. Chem. Phys.
154
,
244901
(
2021
).
24.
L.
Caprini
and
U. M. B.
Marconi
,
Soft Matter
17
,
4109
(
2021
).
25.
S. S.
Khali
,
F.
Peruani
, and
D.
Chaudhuri
,
Phys. Rev. E
109
,
024120
(
2024
).
26.
M.
Patel
and
D.
Chaudhuri
,
New J. Phys.
25
,
123048
(
2023
).
27.
M.
Patel
and
D.
Chaudhuri
,
New J. Phys.
26
,
073048
(
2024
).
28.
A. R.
Sprenger
,
L.
Caprini
,
H.
Löwen
, and
R.
Wittmann
,
J. Phys.: Condens. Matter
35
,
305101
(
2023
).
29.
C.
Scholz
,
S.
Jahanshahi
,
A.
Ldov
, and
H.
Löwen
,
Nat. Commun.
9
,
5156
(
2018
).
30.
D.
Breoni
,
M.
Schmiedeberg
, and
H.
Löwen
,
Phys. Rev. E
102
,
062604
(
2020
).
31.
E.
Lisin
,
O.
Vaulina
,
I.
Lisina
, and
O.
Petrov
,
Phys. Chem. Chem. Phys.
24
,
14150
(
2022
).
32.
L.
Caprini
and
U.
Marini Bettolo Marconi
,
J. Chem. Phys.
154
,
024902
(
2021
).
33.
M.
Muhsin
and
M.
Sahoo
,
Phys. Rev. E
106
,
014605
(
2022
).
34.
A. P.
Antonov
,
L.
Caprini
,
A.
Ldov
,
C.
Scholz
, and
H.
Löwen
,
Phys. Rev. Lett.
133
,
198301
(
2024
).
35.
F.
Adersh
,
M.
Muhsin
, and
M.
Sahoo
,
Eur. Phys. J. E
47
,
33
(
2024
).
36.
D.
Dutta
,
A.
Kundu
,
S.
Sabhapandit
, and
U.
Basu
,
Phys. Rev. E
110
,
044107
(
2024
).
37.
I.
Santra
,
D.
Ajgaonkar
, and
U.
Basu
,
J. Stat. Mech.
2023
,
083201
(
2023
).
38.
H.
Risken
, “Fokker-Planck equation,” in The Fokker-Planck Equation: Methods of Solution and Applications (Springer Berlin Heidelberg, Berlin, 1996), pp. 63–95.
41.
A.
Shee
,
A.
Dhar
, and
D.
Chaudhuri
,
Soft Matter
16
,
4776
(
2020
).
42.
I.
Santra
,
U.
Basu
, and
S.
Sabhapandit
,
J. Phys. A Math. Theor.
55
,
385002
(
2022
).
43.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
,
Phys. Rev. E
99
,
032132
(
2019
).
44.
D.
Frydel
,
Phys. Fluids
35
,
101905
(
2023
).
45.
DLMF
, see https://dlmf.nist.gov/ for “NIST Digital Library of Mathematical Functions.” Release 1.2.0 of 2024-03-15, edited by F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain.
46.
I.
Santra
,
U.
Basu
, and
S.
Sabhapandit
,
Phys. Rev. E
104
,
L012601
(
2021
).
47.
D. S.
Dean
,
S. N.
Majumdar
, and
H.
Schawe
,
Phys. Rev. E
103
,
012130
(
2021
).
48.
N. R.
Smith
and
O.
Farago
,
Phys. Rev. E
106
,
054118
(
2022
).
49.
T. W.
Burkhardt
,
J. Stat. Mech.
2007
,
P07004
(
2007
).
50.
S. N.
Majumdar
,
A.
Rosso
, and
A.
Zoia
,
J. Phys. A: Math. Theor.
43
,
115001
(
2010
).
51.
T. W.
Marshall
and
E. J.
Watson
,
J. Phys. A: Math. Gen.
18
,
3531
(
1985
).
52.
T. W.
Burkhardt
, First-passage Phenomena and their Applications (World Scientific, 2014), pp. 21–44.
53.
P.
Singh
and
A.
Kundu
,
J. Stat. Mech. Theory Experiment
2019
,
083205
(
2019
).
54.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
,
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
55.
P.
Hänggi
and
P.
Jung
,
Adv. Chem. Phys.
89
,
239
(
1994
).
You do not currently have access to this content.