We examine the behavior of a colloidal particle immersed in a viscoelastic bath undergoing stochastic resetting at a rate r. Microscopic probes suspended in a viscoelastic environment do not follow the classical theory of Brownian motion. This is primarily because the memory from successive collisions between the medium particles and the probes does not necessarily decay instantly as opposed to the classical Langevin equation. To treat such a system, one needs to incorporate the memory effects into the Langevin equation. The resulting equation formulated by Kubo, known as the generalized Langevin equation (GLE), has been instrumental to describing the transport of particles in inhomogeneous or viscoelastic environments. The purpose of this work, henceforth, is to study the behavior of such a colloidal particle governed by the GLE under resetting dynamics. To this end, we extend the renewal formalism to compute the general expression for the position variance and the correlation function of the resetting particle driven by the environmental memory. These generic results are then illustrated for the prototypical example of the Jeffreys viscoelastic fluid model. In particular, we identify various timescales and intermittent plateaus in the transient phase before the system relaxes to the steady state; and further discuss the effect of resetting pertaining to these behaviors. Our results are supported by numerical simulations showing an excellent agreement.

1.
P.
Langevin
,
C.R. Acad. Sci. Paris
146
,
530
(
1908
).
2.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
4.
P.
Hänggi
,
Z. Phys. B: Condens. Matter
31
,
407
(
1978
).
5.
P.
Häunggi
and
P.
Jung
,
Adv. Chem. Phys.
89
,
239
(
1994
).
7.
A. D.
Viñales
and
M. A.
Desposito
,
Phys. Rev. E
73
,
016111
(
2006
).
8.
M. A.
Desposito
and
A. D.
Viñales
,
Phys. Rev. E
77
,
031123
(
2008
).
9.
S.
Burov
and
E.
Barkai
,
Phys. Rev. E
78
,
031112
(
2008
).
10.
M. A.
Desposito
and
A. D.
Viñales
,
Phys. Rev. E
80
,
021111
(
2009
).
11.
T.
Sandev
,
Ž.
Tomovski
, and
J. L. A.
Dubbeldam
,
Physica A
390
,
3627
(
2011
).
12.
H.
Yang
,
G.
Luo
,
P.
Karnchanaphanurach
,
T.-M.
Louie
,
I.
Rech
,
S.
Cova
,
L.
Xun
, and
X. S.
Xie
,
Science
302
,
262
(
2003
).
13.
S. C.
Kou
and
X. S.
Xie
,
Phys. Rev. Lett.
93
,
180603
(
2004
).
14.
G. R.
Kneller
,
J. Chem. Phys.
141
,
041105
(
2014
).
15.
I.
Goychuk
,
Adv. Chem. Phys.
150
,
187
(
2012
).
16.
O. F.
Lange
and
H.
Grubmüller
,
J. Chem. Phys.
124
,
214903
(
2006
).
17.
H. S.
Lee
,
S.-H.
Ahn
, and
E. F.
Darve
,
J. Chem. Phys.
150
,
174113
(
2019
).
18.
L.
Lizana
,
T.
Ambjörnsson
,
A.
Taloni
,
E.
Barkai
, and
M. A.
Lomholt
,
Phys. Rev. E
81
,
051118
(
2010
).
19.
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Phys. Rev. Lett.
104
,
160602
(
2010
).
20.
J. L. A.
Dubbeldam
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
Phys. Rev. E
76
,
010801(R)
(
2007
).
21.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2001
).
22.
K.-G.
Wang
and
J.
Masoliver
,
Physica A
231
,
615
(
1996
).
23.
S. A.
Adelman
,
J. Chem. Phys.
64
,
124
(
1976
).
24.
B. R.
Ferrer
,
J. R.
Gomez-Solano
, and
A. V.
Arzola
,
Phys. Rev. Lett.
126
,
108001
(
2021
).
25.
J. R.
Gomez-Solano
and
C.
Bechinger
,
New J. Phys.
17
,
103032
(
2015
).
26.
B.
Das
,
S.
Paul
,
S. K.
Manikandan
, and
A.
Banerjee
,
New J. Phys.
25
,
093051
(
2023
).
27.
S.
Paul
,
N.
Narinder
,
A.
Banerjee
,
K. R.
Nayak
,
J.
Steindl
, and
C.
Bechinger
,
Sci. Rep.
11
,
2023
(
2021
).
28.
J. R.
Gomez-Solano
,
A.
Blokhuis
, and
C.
Bechinger
,
Phys. Rev. Lett.
116
,
138301
(
2016
).
29.
J. R.
Gomez-Solano
,
Front. Phys.
9
,
643333
(
2021
).
30.
F.
Darabi
,
B. R.
Ferrer
, and
J. R.
Gomez-Solano
,
New J. Phys.
25
,
103021
(
2023
).
31.
S.
Paul
,
B.
Roy
, and
A.
Banerjee
,
J. Phys.: Condens. Matter
30
,
345101
(
2018
).
32.
A. V.
Straube
and
F.
Höfling
, “Memory effects in colloidal motion under confinement and driving,”
J. Phys. A: Math. Theor.
57
(29)
295003
(
2024
).
33.
M. R.
Evans
and
S. N.
Majumdar
,
Phys. Rev. Lett.
106
,
160601
(
2011
).
34.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
,
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
36.
T.
Sandev
,
V.
Domazetoski
,
L.
Kocarev
,
R.
Metzler
, and
A.
Chechkin
,
J. Phys. A: Math. Theor.
55
,
074003
(
2022
).
37.
W.
Wang
,
A. G.
Cherstvy
,
H.
Kantz
,
R.
Metzler
, and
I. M.
Sokolov
,
Phys. Rev. E
104
,
024105
(
2021
).
38.
T.
Sandev
,
L.
Kocarev
,
R.
Metzler
, and
A.
Chechkin
,
Chaos Soliton. Fract.
165
,
112878
(
2022
).
39.
M.
Lenzi
,
E.
Lenzi
,
L.
Guilherme
,
L.
Evangelista
, and
H.
Ribeiro
,
Physica A
588
,
126560
(
2022
).
40.
Ł.
Kuśmierz
and
E.
Gudowska-Nowak
,
Phys. Rev. E
99
,
052116
(
2019
).
41.
V.
Méndez
,
A.
Masó-Puigdellosas
, and
D.
Campos
,
Phys. Rev. E
105
,
054118
(
2022
).
42.
V.
Méndez
,
A.
Masó-Puigdellosas
,
T.
Sandev
, and
D.
Campos
,
Phys. Rev. E
103
,
022103
(
2021
).
43.
A.
Pal
,
V.
Stojkoski
, and
T.
Sandev
, Target Search Problems (Springer, 2024), pp. 323–355.
44.
V.
Méndez
and
D.
Campos
,
Phys. Rev. E
93
,
022106
(
2016
).
45.
V.
Stojkoski
,
T.
Sandev
,
L.
Kocarev
, and
A.
Pal
,
Phys. Rev. E
104
,
014121
(
2021
).
46.
S.
Eule
and
J. J.
Metzger
,
New J. Phys.
18
,
033006
(
2016
).
47.
O.
Tal-Friedman
,
Y.
Roichman
, and
S.
Reuveni
,
Phys. Rev. E
106
,
054116
(
2022
).
48.
S.
Ray
and
S.
Reuveni
,
J. Chem. Phys.
152
,
234110
(
2020
).
49.
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
,
Phys. Rev. E
91
,
052131
(
2015
).
50.
R.
Singh
,
R.
Metzler
, and
T.
Sandev
,
J. Phys. A: Math. Theor.
53
,
505003
(
2020
).
51.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
52.
S. C.
Kou
,
Ann. Appl. Stat.
2
,
501
(
2008
).
53.
W.
Min
,
G.
Luo
,
B. J.
Cherayil
,
S.
Kou
, and
X. S.
Xie
,
Phys. Rev. Lett.
94
,
198302
(
2005
).
55.
M. R.
Evans
and
S. N.
Majumdar
,
J. Phys. A: Math. Theor.
47
,
285001
(
2014
).
56.
A.
Masó-Puigdellosas
,
D.
Campos
, and
V.
Méndez
,
Phys. Rev. E
99
,
012141
(
2019
).
57.
V.
Stojkoski
,
T.
Sandev
,
L.
Kocarev
, and
A.
Pal
,
J. Phys. A: Math. Theor.
55
,
104003
(
2022
).
58.
S. N.
Majumdar
and
G.
Oshanin
,
J. Phys. A: Math. Theor.
51
,
435001
(
2018
).
59.
D.
Vinod
,
A. G.
Cherstvy
,
R.
Metzler
, and
I. M.
Sokolov
,
Phys. Rev. E
106
,
034137
(
2022
).
60.
Y. L.
Raikher
,
V. V.
Rusakov
, and
R.
Perzynski
,
Soft Matter
9
,
10857
(
2013
).
61.
M. H.
Duong
and
X.
Shang
,
J. Comput. Phys.
464
,
111332
(
2022
).
62.
M.
Wiśniewski
,
J.
Łuczka
, and
J.
Spiechowicz
,
Phys. Rev. E
109
,
044116
(
2024
).
63.
N.
Bockius
,
J.
Shea
,
G.
Jung
,
F.
Schmid
, and
M.
Hanke
,
J. Phys.: Condens. Matter
33
,
214003
(
2021
).
64.
A. D.
Baczewski
and
S. D.
Bond
,
J. Chem. Phys.
139
,
044107
(
2013
).
65.
P.
Siegle
,
I.
Goychuk
,
P.
Talkner
, and
P.
Hänggi
,
Phys. Rev. E
81
,
011136
(
2010
).
66.
P.
Siegle
,
I.
Goychuk
, and
P.
Hänggi
,
Europhys. Lett.
93
,
20002
(
2011
).
67.
S.
Gupta
,
S. N.
Majumdar
, and
G.
Schehr
,
Phys. Rev. Lett.
112
,
220601
(
2014
).
68.
69.
O.
Tal-Friedman
,
A.
Pal
,
A.
Sekhon
,
S.
Reuveni
, and
Y.
Roichman
,
J. Phys. Chem. Lett.
11
,
7350
(
2020
).
70.
B.
Besga
,
A.
Bovon
,
A.
Petrosyan
,
S. N.
Majumdar
, and
S.
Ciliberto
,
Phys. Rev. Res.
2
,
032029
(
2020
).
71.
S.
Paramanick
,
A.
Biswas
,
H.
Soni
,
A.
Pal
, and
N.
Kumar
,
PRX Life
2
,
033007
(
2024
).
72.
A.
Pal
,
S.
Kostinski
, and
S.
Reuveni
,
J. Phys. A: Math. Theor.
55
,
021001
(
2022
).
73.
S.
Gupta
and
A. M.
Jayannavar
,
Front. Phys.
10
,
789097
(
2022
).
74.
F.
Ginot
,
J.
Caspers
,
M.
Krüger
, and
C.
Bechinger
,
Phys. Rev. Lett.
128
,
028001
(
2022
).
75.
W.
Min
and
X. S.
Xie
,
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
73
,
010902
(
2006
).
76.
T.
Sandev
,
A.
Chechkin
,
H.
Kantz
, and
R.
Metzler
,
Fract. Calc. Appl. Anal.
18
,
1006
(
2015
).
77.
J.
Śle˛zak
,
R.
Metzler
, and
M.
Magdziarz
,
New J. Phys.
20
,
023026
(
2018
).
78.
A. S.
Bodrova
and
I. M.
Sokolov
,
Phys. Rev. E
101
,
062117
(
2020
).
79.
A.
Pal
,
A.
Kundu
, and
M. R.
Evans
,
J. Phys. A: Math. Theor.
49
,
225001
(
2016
).
80.
A.
Pal
and
S.
Reuveni
,
Phys. Rev. Lett.
118
,
030603
(
2017
).
81.
M.
Radice
,
J. Phys. A: Math. Theor.
55
,
224002
(
2022
).
82.
R.
Singh
,
R.
Metzler
, and
T.
Sandev
,
Chaos
35
,
011103
(
2025
).
83.
A. S.
Bodrova
and
I. M.
Sokolov
,
Phys. Rev. E
101
,
052130
(
2020
).
84.
G.
Tucci
,
A.
Gambassi
,
S. N.
Majumdar
, and
G.
Schehr
,
Phys. Rev. E
106
,
044127
(
2022
).
85.
A.
Biswas
,
A.
Kundu
, and
A.
Pal
,
Phys. Rev. E
110
,
L042101
(
2024
).
86.
A.
Pal
,
Ł.
Kuśmierz
, and
S.
Reuveni
,
Phys. Rev. Res.
2
,
043174
(
2020
).
87.
D.
Gupta
,
C. A.
Plata
,
A.
Kundu
, and
A.
Pal
,
J. Phys. A: Math. Theor.
54
,
025003
(
2020
).
88.
A.
Nagar
and
S.
Gupta
,
Phys. Rev. E
93
,
060102
(
2016
).
89.
Y. P.
Kalmykov
,
W.
Coffey
, and
S.
Titov
,
J. Chem. Phys.
124
,
024107
(
2006
).
90.
L.
Caprini
,
U.
Marini Bettolo Marconi
,
A.
Puglisi
, and
A.
Vulpiani
,
J. Chem. Phys.
150
,
024902
(
2019
).
91.
A.
Lapolla
and
A.
Godec
,
J. Chem. Phys.
153
,
194104
(
2020
).
92.
K.
Capała
,
B.
Dybiec
, and
E.
Gudowska-Nowak
,
Chaos
30
,
013127
(
2020
).
93.
M.
Kimura
and
T.
Akimoto
,
J. Chem. Phys.
159
,
055102
(
2023
).
You do not currently have access to this content.