Brownian motion in one or more dimensions is extensively used as a stochastic process to model natural and engineering signals, as well as financial data. Most works dealing with multidimensional Brownian motion consider the different dimensions as independent components. In this article, we investigate a model of correlated Brownian motion in R 2, where the individual components are not necessarily independent. We explore various statistical properties of the process under consideration, going beyond the conventional analysis of the second moment. Our particular focus lies on investigating the distribution of turning angles. This distribution reveals particularly interesting characteristics for processes with dependent components that are relevant to applications in diverse physical systems. Theoretical considerations are supported by numerical simulations and analysis of two real-world datasets: the financial data of the Dow Jones Industrial Average and the Standard and Poor’s 500, and trajectories of polystyrene beads in water. Finally, we show that the model can be readily extended to trajectories with correlations that change over time.

1.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
322
,
549
(
1905
).
2.
M.
von Smoluchowski
, “
Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen
,”
Ann. Phys.
21
,
756
(
1906
).
3.
H.
Mori
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
455
(
1965
).
4.
P.
Mörters
and
Y.
Peres
,
Brownian Motion
(
Cambridge University Press
,
New York
,
2010
). Vol. 30.
5.
P.
Hänggi
and
F.
Marchesoni
, “
Introduction: 100 years of Brownian motion
,”
Chaos
15
,
026101
(
2005
).
6.
P.
Saffman
and
M.
Delbrück
, “
Brownian motion in biological membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
72
,
3111
3113
(
1975
).
7.
L. J.
Allen
,
An Introduction to Stochastic Processes with Applications to Biology
(
CRC Press
,
Boca Raton
,
2010
).
8.
W.
Ebeling
and
I. M.
Sokolov
,
Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
(
World Scientific
,
Singapore
,
2005
).
9.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
10.
J.
Schwinger
, “
Brownian motion of a quantum oscillator
,”
J. Math. Phys.
2
,
407
432
(
1961
).
11.
H.
Friedman
,
D. A.
Kessler
, and
E.
Barkai
, “
Quantum walks: The first detected passage time problem
,”
Phys. Rev. E
95
,
032141
(
2017
).
12.
J. S.
Horne
,
E. O.
Garton
,
S. M.
Krone
, and
J. S.
Lewis
, “
Analyzing animal movements using Brownian bridges
,”
Ecology
88
,
2354
2363
(
2007
).
13.
O.
Vilk
,
E.
Aghion
,
T.
Avgar
,
C.
Beta
,
O.
Nagel
,
A.
Sabri
,
R.
Sarfati
,
D. K.
Schwartz
,
M.
Weiss
,
D.
Krapf
et al.
Unravelling the origins of anomalous diffusion: From molecules to migrating storks
,”
Phys. Rev. Res.
4
,
033055
(
2022
).
14.
B. D.
Meyer
and
H. M.
Saley
, “
On the strategic origin of Brownian motion in finance
,”
Int. J. Game Theory
31
,
285
319
(
2003
).
15.
A.
Borhani
and
M.
Pätzold
, “Modelling of non-stationary mobile radio channels using two-dimensional Brownian motion processes,” in
2013 International Conference on Advanced Technologies for Communications (ATC 2013)
(IEEE, 2013), pp. 241–246.
16.
L.
Shi
and
R.
Wu
, “A probabilistic conflict detection algorithm in terminal area based on three-dimensional Brownian motion,” in 2012 IEEE 11th International Conference on Signal Processing (IEEE, 2012), Vol. 3, pp. 2287–2291.
17.
X.
Gao
, “
Image encryption algorithm based on 2D hyperchaotic map
,”
Opt. Laser Technol.
142
,
107252
(
2021
).
18.
M.
Rawat
,
A. S.
Bafila
,
S.
Kumar
,
M.
Kumar
,
A.
Pundir
, and
S.
Singh
, “
A new encryption model for multimedia content using two dimensional Brownian motion and coupled map lattice
,”
Mult. Tools Appl.
82
,
43421
43453
(
2023
).
19.
K.
Giesecke
, “
Correlated default with incomplete information
,”
J. Bank. Financ.
28
,
1521
1545
(
2004
).
20.
W.-K.
Ching
,
J.-W.
Gu
, and
H.
Zheng
, “
On correlated defaults and incomplete information
,”
J. Ind. Manag. Optim.
17
,
889
908
(
2021
).
21.
P. A.
Hassan
,
S.
Rana
, and
G.
Verma
, “
Making sense of Brownian motion: Colloid characterization by dynamic light scattering
,”
Langmuir
31
,
3
12
(
2015
).
22.
J. D.
Knight
and
J. J.
Falke
, “
Single-molecule fluorescence studies of a PH domain: New insights into the membrane docking reaction
,”
Biophys. J.
96
,
566
582
(
2009
).
23.
G.
Campagnola
,
K.
Nepal
,
B. W.
Schroder
,
O. B.
Peersen
, and
D.
Krapf
, “
Superdiffusive motion of membrane-targeting C2 domains
,”
Sci. Rep.
5
,
17721
(
2015
).
24.
D.
Krapf
,
G.
Campagnola
,
K.
Nepal
, and
O. B.
Peersen
, “
Strange kinetics of bulk-mediated diffusion on lipid bilayers
,”
Phys. Chem. Chem. Phys.
18
,
12633
12641
(
2016
).
25.
D.
Krapf
,
E.
Marinari
,
R.
Metzler
,
G.
Oshanin
,
X.
Xu
, and
A.
Squarcini
, “
Power spectral density of a single Brownian trajectory: What one can and cannot learn from it
,”
New J. Phys.
20
,
023029
(
2018
).
26.
S.
Kou
and
H.
Zhong
, “
First-passage times of two-dimensional Brownian motion
,”
Adv. Appl. Probab.
48
,
1045
1060
(
2016
).
27.
U.
Basu
,
S. N.
Majumdar
,
A.
Rosso
, and
G.
Schehr
, “
Active Brownian motion in two dimensions
,”
Phys. Rev. E
98
,
062121
(
2018
).
28.
Ł.
Bielak
,
A.
Grzesiek
,
J.
Janczura
, and
A.
Wyłomańska
, “
Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling
,”
Res. Policy
74
,
102308
(
2021
).
29.
Y.
Shen
,
G. B.
Giannakis
, and
B.
Baingana
, “
Nonlinear structural vector autoregressive models with application to directed brain networks
,”
IEEE Trans. Signal Process.
67
,
5325
5339
(
2019
).
30.
D. B.
Mayer
,
E.
Sarmiento-Gómez
,
M. A.
Escobedo-Sánchez
,
J. P.
Segovia-Gutiérrez
,
C.
Kurzthaler
,
S. U.
Egelhaaf
, and
T.
Franosch
, “
Two-dimensional Brownian motion of anisotropic dimers
,”
Phys. Rev. E
104
,
014605
(
2021
).
31.
O. M.
Maragó
,
F.
Bonaccorso
,
R.
Saija
,
G.
Privitera
,
P. G.
Gucciardi
,
M. A.
Iatì
,
G.
Calogero
,
P. H.
Jones
,
F.
Borghese
,
P.
Denti
et al.
Brownian motion of graphene
,”
ACS Nano
4
,
7515
7523
(
2010
).
32.
E.
Grong
and
S.
Sommer
, “
Most probable paths for anisotropic Brownian motions on manifolds
,”
Found. Comput. Math.
24
,
313
345
(
2024
).
33.
D. A.
Tsyboulski
,
S. M.
Bachilo
,
A. B.
Kolomeisky
, and
R. B.
Weisman
, “
Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension
,”
ACS Nano
2
,
1770
1776
(
2008
).
34.
N.
Fakhri
,
F. C.
MacKintosh
,
B.
Lounis
,
L.
Cognet
, and
M.
Pasquali
, “
Brownian motion of stiff filaments in a crowded environment
,”
Science
330
,
1804
1807
(
2010
).
35.
H.
Föllmer
and
P.
Protter
, “
On Itô’s formula for multidimensional Brownian motion
,”
Prob. Theory Relat. Fields
116
,
1
20
(
2000
).
36.
J.
Mrongowius
and
A.
Rößler
, “
On the approximation and simulation of iterated stochastic integrals and the corresponding Lévy areas in terms of a multidimensional Brownian motion
,”
Stoch. Anal. Appl.
40
,
397
425
(
2022
).
37.
W. S.
Kendall
, “
Coupling all the Lévy stochastic areas of multidimensional Brownian motion
,”
Ann. Prob.
35
,
935
953
(
2007
).
38.
H.-H.
Kuo
and
N.-R.
Shieh
, “
A generalized Itô’s formula for multidimensional Brownian motions and its applications
,”
Chin. J. Math.
15
,
163
174
(
1987
).
39.
S.
Kou
and
H.
Zhong
, “
First-passage times of two-dimensional Brownian motion
,”
Adv. Appl. Prob.
48
,
1045
1060
(
2016
).
40.
R.
Tsekov
and
E.
Ruckenstein
, “
Two-dimensional Brownian motion of atoms and dimers on solid surfaces
,”
Surf. Sci.
344
,
175
181
(
1995
).
41.
L.
Sacerdote
,
M.
Tamborrino
, and
C.
Zucca
, “
First passage times of two-dimensional correlated processes: Analytical results for the Wiener process and a numerical method for diffusion processes
,”
J. Comput. Appl. Math.
296
,
275
292
(
2016
).
42.
B.
Kopytko
and
M.
Portenko
, “
On a multidimensional Brownian motion with a membrane located on a given hyperplane
,”
Stoch. Process. Appl.
160
,
371
385
(
2023
).
43.
J.
Blanchet
and
K.
Murthy
, “
Exact simulation of multidimensional reflected Brownian motion
,”
J. Appl. Prob.
55
,
137
156
(
2018
).
44.
R.
Sant’Ana
,
R.
Coelho
, and
A.
Alcaim
, “
Text-independent speaker recognition based on the Hurst parameter and the multidimensional fractional Brownian motion model
,”
IEEE Trans. Audio Speech Lang. Process.
14
,
931
940
(
2006
).
45.
H.
Qian
,
G. M.
Raymond
, and
J. B.
Bassingthwaighte
, “
On two-dimensional fractional Brownian motion and fractional Brownian random field
,”
J. Phys. A: Math. Gen.
31
,
L527
(
1998
).
46.
K.
Maraj-Zygma̧t
,
A.
Grzesiek
,
G.
Sikora
,
J.
Gajda
, and
A.
Wyłomańska
, “
Testing of two-dimensional Gaussian processes by sample cross-covariance function
,”
Chaos
33
,
073135
(
2023
).
47.
L.
Ji
and
S.
Robert
, “
Ruin problem of a two-dimensional fractional Brownian motion risk process
,”
Stoch. Models
34
,
73
97
(
2018
).
48.
D. R.
McGaughey
and
G.
Aitken
, “
Generating two-dimensional fractional Brownian motion using the fractional Gaussian process (FGp) algorithm
,”
Phys. A
311
,
369
380
(
2002
).
49.
D. A. I.
Maruddani
and
Trimono
, “
Modeling stock prices in a portfolio using multidimensional geometric Brownian motion
,”
J. Phys.: Conf. Ser.
1025
,
012122
(
2018
).
50.
M.
Dominé
and
V.
Pieper
, “
First passage time distribution of a two-dimensional Wiener process with drift
,”
Probab. Eng. Inform. Sci.
7
,
545
555
(
1993
).
51.
L.
Sacerdote
and
C.
Zucca
, “
Joint distribution of first exit times of a two dimensional Wiener process with jumps with application to a pair of coupled neurons
,”
Math. Biosci.
245
,
61
69
(
2013
).
52.
P. J.
Thomas
and
B.
Lindner
, “
Phase descriptions of a multidimensional Ornstein-Uhlenbeck process
,”
Phys. Rev. E
99
,
062221
(
2019
).
53.
A.
Di Crescenzo
,
V.
Giorno
,
A. G.
Nobile
, and
S.
Spina
, “
First-exit-time problems for two-dimensional Wiener and Ornstein–Uhlenbeck processes through time-varying ellipses
,”
Stochastics
96
,
696
727
(
2024
).
54.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
JHU Press
,
2013
).
55.
H.
Qian
,
M. P.
Sheetz
, and
E. L.
Elson
, “
Single particle tracking. analysis of diffusion and flow in two-dimensional systems
,”
Biophys. J.
60
,
910
921
(
1991
).
56.
I.
Karatzas
and
S.
Shreve
,
Brownian Motion and Stochastic Calculus
(
Springer
,
2014
). Vol. 113.
57.
F.
Wang
and
A. E.
Gelfand
, “
Modeling space and space-time directional data using projected Gaussian processes
,”
J. Am. Stat. Assoc.
109
,
1565
1580
(
2014
).
58.
D.
Hernandez-Stumpfhauser
,
F. J.
Breidt
, and
M. J.
van der Woerd
, “
The general projected normal distribution of arbitrary dimension: Modeling and Bayesian inference
,”
Bayesian Anal.
12
,
113
(
2017
).
59.
E. A.
Codling
,
M. J.
Plank
, and
S.
Benhamou
, “
Random walk models in biology
,”
J. R. Soc. Interface
5
,
813
834
(
2008
).
60.
S.
Burov
,
S. A.
Tabei
,
T.
Huynh
,
M. P.
Murrell
,
L. H.
Philipson
,
S. A.
Rice
,
M. L.
Gardel
,
N. F.
Scherer
, and
A. R.
Dinner
, “
Distribution of directional change as a signature of complex dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
19689
19694
(
2013
).
61.
W. J.
Bos
,
B.
Kadoch
, and
K.
Schneider
, “
Angular statistics of Lagrangian trajectories in turbulence
,”
Phys. Rev. Lett.
114
,
214502
(
2015
).
62.
S.
Sadegh
,
J. L.
Higgins
,
P. C.
Mannion
,
M. M.
Tamkun
, and
D.
Krapf
, “
Plasma membrane is compartmentalized by a self-similar cortical actin meshwork
,”
Phys. Rev. X
7
,
011031
(
2017
).
63.
B.
Kadoch
,
W. J.
Bos
, and
K.
Schneider
, “
Directional change of fluid particles in two-dimensional turbulence and of football players
,”
Phys. Rev. Fluids
2
,
064604
(
2017
).
64.
A.
Mosqueira
,
P. A.
Camino
, and
F. J.
Barrantes
, “
Antibody-induced crosslinking and cholesterol-sensitive, anomalous diffusion of nicotinic acetylcholine receptors
,”
J. Neurochem.
152
,
663
674
(
2020
).
65.
L.
Fang
,
L.
Li
,
J.
Guo
,
Y.
Liu
, and
X.
Huang
, “
Time scale of directional change of active Brownian particles
,”
Phys. Lett. A
427
,
127934
(
2022
).
66.
M.
Hidalgo-Soria
,
Y.
Haddad
,
E.
Barkai
,
Y.
Garini
, and
S.
Burov
, “Directed motion and spatial coherence in the cell nucleus,” arXiv:2407.08899 (2024).
67.
S.
Thapa
,
A.
Wyłomańska
,
G.
Sikora
,
C. E.
Wagner
,
D.
Krapf
,
H.
Kantz
,
A. V.
Chechkin
, and
R.
Metzler
, “
Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories
,”
New J. Phys.
23
,
013008
(
2021
).
68.
D.
Montiel
,
H.
Cang
, and
H.
Yang
, “
Quantitative characterization of changes in dynamical behavior for single-particle tracking studies
,”
J. Phys. Chem. B
110
,
19763
19770
(
2006
).
69.
T.
Akimoto
and
E.
Yamamoto
, “
Detection of transition times from single-particle-tracking trajectories
,”
Phys. Rev. E
96
,
052138
(
2017
).
70.
A.
Pacheco-Pozo
and
D.
Krapf
, “
Fractional Brownian motion with fluctuating diffusivities
,”
Phys. Rev. E
110
,
014105
(
2024
).
71.
A.
Pacheco-Pozo
,
M.
Balcerek
,
A.
Wyłomanska
,
K.
Burnecki
,
I. M.
Sokolov
, and
D.
Krapf
, “
Langevin equation in heterogeneous landscapes: How to choose the interpretation
,”
Phys. Rev. Lett.
133
,
067102
(
2024
).
72.
A.
Weron
,
K.
Burnecki
,
E. J.
Akin
,
L.
Solé
,
M.
Balcerek
,
M. M.
Tamkun
, and
D.
Krapf
, “
Ergodicity breaking on the neuronal surface emerges from random switching between diffusive states
,”
Sci. Rep.
7
,
5404
(
2017
).
73.
G.
Muñoz-Gil
,
H.
Bachimanchi
,
J.
Pineda
,
B.
Midtvedt
,
M.
Lewenstein
,
R.
Metzler
,
D.
Krapf
,
G.
Volpe
, and
C.
Manzo
, “Quantitative evaluation of methods to analyze motion changes in single-particle experiments,” arXiv:2311.18100 (2023).
74.
F.
Lavancier
,
A.
Philippe
, and
D.
Surgailis
, “
Covariance function of vector self-similar processes
,”
Stat. Probab. Lett.
79
,
2415
2421
(
2009
).
75.
P.-O.
Amblard
and
J.-F.
Coeurjolly
, “
Identification of the multivariate fractional Brownian motion
,”
IEEE Trans. Signal Process.
59
,
5152
5168
(
2011
).
76.
D.
Krapf
,
N.
Lukat
,
E.
Marinari
,
R.
Metzler
,
G.
Oshanin
,
C.
Selhuber-Unkel
,
A.
Squarcini
,
L.
Stadler
,
M.
Weiss
, and
X.
Xu
, “
Spectral content of a single non-Brownian trajectory
,”
Phys. Rev. X
9
,
011019
(
2019
).
77.
A. V.
Chechkin
,
V. Y.
Gonchar
,
J.
Klafter
, and
R.
Metzler
, “Fundamentals of Lévy flight processes,” in Fractals, Diffusion, and Relaxation in Disordered Complex Systems, Advances in Chemical Physics, Part B (Wiley, 2006), pp. 439–496.
78.
V. V.
Palyulin
,
G.
Blackburn
,
M. A.
Lomholt
,
N. W.
Watkins
,
R.
Metzler
,
R.
Klages
, and
A. V.
Chechkin
, “
First passage and first hitting times of Lévy flights and Lévy walks
,”
New J. Phys.
21
,
103028
(
2019
).
79.
K.
Burnecki
and
A.
Weron
, “
Fractional Lévy stable motion can model subdiffusive dynamics
,”
Phys. Rev. E
82
,
021130
(
2010
).
80.
J.
Janczura
,
K.
Burnecki
,
M.
Muszkieta
,
A.
Stanislavsky
, and
A.
Weron
, “
Classification of random trajectories based on the fractional Lévy stable motion
,”
Chaos, Solitons Fractals
154
,
111606
(
2022
).
81.
A.
Ayache
and
J.
Lévy Véhel
, “
On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion
,”
Stoch. Process. Their Appl.
111
,
119
156
(
2004
).
82.
W.
Wang
,
M.
Balcerek
,
K.
Burnecki
,
A. V.
Chechkin
,
S.
Janušonis
,
J.
Śęzak
,
T.
Vojta
,
A.
Wyłomańska
, and
R.
Metzler
, “
Memory-multi-fractional Brownian motion with continuous correlations
,”
Phys. Rev. Res.
5
,
L032025
(
2023
).
83.
J.
Ślęzak
and
R.
Metzler
, “
Minimal model of diffusion with time changing Hurst exponent
,”
J. Phys. A: Math. Theor.
56
,
35LT01
(
2023
).
84.
M.
Balcerek
,
A.
Wyłomańska
,
K.
Burnecki
,
R.
Metzler
, and
D.
Krapf
, “
Modelling intermittent anomalous diffusion with switching fractional Brownian motion
,”
New J. Phys.
25
,
103031
(
2023
).
85.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
, “
Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
6438
6443
(
2011
).
86.
R.
Kutner
and
J.
Masoliver
, “
The continuous time random walk, still trendy: Fifty-year history, state of art and outlook
,”
Eur. Phys. J. B
90
,
50
(
2017
).
87.
G.
Samorodnitsky
and
M.
Taqqu
,
Stable non-Gaussian Random Processes
(
Chapman & Hall
,
New York
,
1994
).
You do not currently have access to this content.