This paper presents a recursive method for identifying extreme and superstable curves in the parameter space of dissipative one-dimensional maps. The method begins by constructing an Archimedean spiral with a constant arc length. Subsequently, it identifies extreme and superstable curves by calculating an observable ψ. The spiral is used to locate a region where ψ changes sign. When this occurs, a bisection method is applied to determine the first point on the desired superstable or extreme curve. Once the initial direction is established, the recursive method identifies subsequent points using an additional bisection method, iterating the process until the stopping conditions are met. The logistic-Gauss map demonstrates each step of the method, as it exhibits a wide variety of periodicity structures in the parameter space, including cyclic extreme and superstable curves, which contribute to the formation of period-adding structures. Examples of extreme and superstable curves obtained by the recursive method are presented. It is important to note that the proposed method is generalizable and can be adapted to any one-dimensional map.

1.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Science & Business Media
,
2013
), Vol. 42.
2.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Stochastic Motion
(
Springer Science & Business Media
,
2013
), Vol. 38.
3.
B.-L.
Hao
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
(
World Scientific
,
1989
).
4.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
,
Applied Mathematical Sciences
(
Springer-Verlag
,
1992
).
5.
J. C.
Willems
, “
Dissipative dynamical systems
,”
Eur. J. Control
13
,
134
151
(
2007
).
6.
C. M.
Kuwana
,
J. A.
de Oliveira
, and
E. D.
Leonel
, “
A family of dissipative two-dimensional mappings: Chaotic, regular and steady state dynamics investigation
,”
Physica A
395
,
458
465
(
2014
).
7.
J. A.
de Oliveira
and
E. D.
Leonel
, “
Locating invariant tori for a family of two-dimensional Hamiltonian mappings
,”
Physica A
390
,
3727
3731
(
2011
).
8.
J. A.
De Oliveira
,
L. T.
Montero
,
D. R.
Da Costa
,
J.
Méndez-Bermúdez
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
An investigation of the parameter space for a family of dissipative mappings
,”
Chaos
29
,
053114
(
2019
).
9.
D. F.
Oliveira
,
E. D.
Leonel
, and
M.
Robnik
, “
Boundary crisis and transient in a dissipative relativistic standard map
,”
Phys. Lett. A
375
,
3365
3369
(
2011
).
10.
D. G.
Ladeira
and
E. D.
Leonel
, “
Dynamics of a charged particle in a dissipative Fermi–Ulam model
,”
Commun. Nonlinear Sci. Numer. Simul.
20
,
546
558
(
2015
).
11.
D. R.
da Costa
, “
A dissipative Fermi–Ulam model under two different kinds of dissipation
,”
Commun. Nonlinear Sci. Numer. Simul.
22
,
1263
1274
(
2015
).
12.
D. R.
da Costa
,
J. G.
Rocha
,
L. S.
de Paiva
, and
R. O.
Medrano-T
, “
Logistic-like and Gauss coupled maps: The born of period-adding cascades
,”
Chaos, Solitons Fractals
144
,
110688
(
2021
).
13.
D.
da Costa
,
M.
Hansen
,
R.
Medrano-T
, and
E.
Leonel
, “
Extreming curves and the parameter space of a generalized logistic mapping
,”
J. Vib. Test. Syst. Dyn.
2
,
109
(
2018
).
14.
J. A.
de Oliveira
,
H. M.
de Mendonça
,
D. R.
da Costa
, and
E. D.
Leonel
, “
Effects of a parametric perturbation in the Hassell mapping
,”
Chaos, Solitons Fractals
113
,
238
243
(
2018
).
15.
G.
Ruiz
and
C.
Tsallis
, “
Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps
,”
Eur. Phys. J. B
67
,
577
584
(
2009
).
16.
E. D.
Leonel
,
J.
Kamphorst Leal da Silva
, and
S.
Oliffson Kamphorst
, “
Transients in a time-dependent logistic map
,”
Physica A
295
,
280
284
(
2001
).
17.
N.
Fiedler-Ferrara
and
C. P. C.
do Prado
,
Caos: uma Introdução
(
Editora Blucher
,
1994
).
18.
E. D.
Leonel
,
Invariância de Escala em Sistemas Dinâmicos Não Lineares
(
Editora Blucher
,
2019
).
19.
E.
Leonel
,
Scaling Laws in Dynamical Systems
,
Nonlinear Physical Science
(
Springer Nature
,
Singapore
,
2021
).
20.
C. E. P.
Abreu
,
J. D. V.
Hermes
,
D. R.
da Costa
,
E. S.
Medeiros
, and
R. O.
Medrano-T
, “Extreme fractal dimension at periodicity cascades in parameter spaces,”
Phys. Rev. E
110
,
L032201
(
2024
).
21.
J. A.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
22.
E.
Barreto
,
B. R.
Hunt
,
C.
Grebogi
, and
J. A.
Yorke
, “
From high dimensional chaos to stable periodic orbits: The structure of parameter space
,”
Phys. Rev. Lett.
78
,
4561
(
1997
).
23.
S.
Fraser
and
R.
Kapral
, “
Analysis of flow hysteresis by a one-dimensional map
,”
Phys. Rev. A
25
,
3223
(
1982
).
24.
S. V.
Gonchenko
, “
On a two parameter family of systems close to a system with a nontransversal Poincaré homoclinic curve: I
,”
Selecta Math. Sovietica
10
,
69
(
1991
), translated from Methods of Qualitative Theory of Differential Equations; Ed. Gorky St. Univ., 1985, 55–72.
25.
S. V.
Gonchenko
,
C.
Simó
, and
A.
Vieiro
, “
Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight
,”
Nonlinearity
26
,
621
(
2013
).
26.
J. P.
Carcasses
,
C.
Mira
,
M.
Bosch
,
C.
Simó
, and
J. C.
Tatjer
, “
“Crossroad area–spring area” transition (I) parameter plane representation
,”
Int. J. Bifurc. Chaos
1
,
183
196
(
1991
).
27.
C.
Mira
, ““
Shrimp” fishing, or searching for foliation singularities of the parameter plane? Part I: Basic elements of the parameter plane foliation
,”
2016
(5), 1.
28.
V. I.
Arnold
, “
Small denominators. I. Mapping the circle onto itself
,”
Izv. Akad. Nauk SSSR Ser. Mat.
25
,
21
86
(
1961
), see https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3366&option_lang=eng.
29.
D. R.
Da Costa
,
M.
Hansen
,
G.
Guarise
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps
,”
Phys. Lett. A
380
,
1610
1614
(
2016
).
30.
A. C.
de Sousa
,
E.
Deckers
,
C.
Claeys
, and
W.
Desmet
, “
On the assembly of Archimedean spiral cavities for sound absorption applications: Design, optimization and experimental validation
,”
Mech. Syst. Signal Process.
147
,
107102
(
2021
).
31.
K.
Kaneko
, “
On the period-adding phenomena at the frequency locking in a one-dimensional mapping
,”
Prog. Theor. Phys.
68
,
669
672
(
1982
).
32.
E.
Yellin
and
A.
Rabinovitch
, “
Properties and features of asymmetric partial devil’s staircases deduced from piecewise linear maps
,”
Phys. Rev. E
67
,
016202
(
2003
).
33.
C.
Stegemann
and
P. C.
Rech
, “
Organization of the dynamics in a parameter plane of a tumor growth mathematical model
,”
Int. J. Bifurc. Chaos
24
,
1450023
(
2014
).
34.
S. L. T.
de Souza
,
A. A.
Lima
,
I. L.
Caldas
,
R. O.
Medrano-T
, and
Z. O.
Guimarães-Filho
, “
Self-similarities of periodic structures for a discrete model of two-gene system
,”
Phys. Lett. A
376
,
1290
(
2012
).
35.
E. S.
Medeiros
,
R. O.
Medrano-T
,
I. L.
Caldas
, and
S. L. T.
de Souza
, “
Torsion-adding and asymptotic winding number for periodic window sequences
,”
Phys. Lett. A
377
,
628
631
(
2013
).
36.
V.
English
,
U.
Parlitz
, and
W.
Lauterborn
, “
Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems
,”
Phys. Rev. E
92
,
022907
(
2015
).
37.
K.
Klapcsik
,
R.
Varga
, and
F.
Hegedűs
, “
Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate
,”
Nonlinear Dyn.
94
,
2373
2389
(
2018
).
38.
K.
Klapcsik
and
F.
Hegedűs
, “
Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid
,”
Ultrason. Sonochem.
54
,
256
273
(
2019
).
39.
R.
Varga
,
K.
Klapcsik
, and
F.
Hegedűs
, “
Route to shrimps: Dissipation driven formation of shrimp-shaped domains
,”
Chaos, Solitons Fractals
130
,
109424
(
2020
).
You do not currently have access to this content.