We examine two stochastic processes with random parameters, which in their basic versions (i.e., when the parameters are fixed) are Gaussian and display long-range dependence and anomalous diffusion behavior, characterized by the Hurst exponent. Our motivation comes from biological experiments, which show that the basic models are inadequate for accurate description of the data, leading to modifications of these models in the literature through introduction of the random parameters. The first process, fractional Brownian motion with random Hurst exponent (referred to as FBMRE below) has been recently studied, while the second one, Riemann–Liouville fractional Brownian motion with random exponent (RL FBMRE) has not been explored. To advance the theory of such doubly stochastic anomalous diffusion models, we investigate the probabilistic properties of RL FBMRE and compare them to those of FBMRE. Our main focus is on the autocovariance function and the time-averaged mean squared displacement of the processes. Furthermore, we analyze the second moment of the increment processes for both models, as well as their ergodicity properties. As a specific case, we consider the mixture of two-point distributions of the Hurst exponent, emphasizing key differences in the characteristics of RL FBMRE and FBMRE, particularly in their asymptotic behavior. The theoretical findings presented here lay the groundwork for developing new methods to distinguish these processes and estimate their parameters from experimental data.

1.
J. P.
Bouchaud
and
A.
Georges
, “
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,”
Phys. Rep.
195
,
127
293
(
1990
).
2.
A. N.
Kolmogorov
, “
Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum
,”
C.R. (Doklady) Acad. Sci. URSS (NS)
26
,
115
(
1940
).
3.
B. B.
Mandelbrot
and
J. W.
Van Ness
, “
fractional Brownian motions, Fractional noises and applications
,”
SIAM Rev.
10
,
422
437
(
1968
).
4.
J.
Beran
,
Statistics for Long-Memory Processes
(
Chapman & Chal
,
1994
).
5.
F. J.
Molz
,
H. H.
Liu
, and
J.
Szulga
, “
Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions
,”
Water Res. Res.
33
,
2273
2286
(
1997
).
6.
D. A.
Benson
,
M. M.
Meerschaert
, and
J.
Revielle
, “
Fractional calculus in hydrologic modeling: A numerical perspective
,”
Adv. Water. Resour.
51
,
479
497
(
2013
).
7.
A.
Pashko
, “Simulation of telecommunication traffic using statistical models of fractional Brownian motion,” in 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) (2017), pp. 414–418.
8.
J.
Frecon
,
G.
Didier
,
N.
Pustelnik
, and
P.
Abry
, “
Non-linear wavelet regression and branch & bound optimization for the full identification of bivariate operator fractional Brownian motion
,”
IEEE Trans. Signal Process.
64
,
4040
4049
(
2016
).
9.
Y.
Chang
and
S.
Chang
, “
A fast estimation algorithm on the hurst parameter of discrete-time fractional Brownian motion
,”
IEEE Trans. Signal Process.
50
,
554
559
(
2002
).
10.
S.
Liu
and
S.
Chang
, “
Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification
,”
IEEE Trans. Image Process.
6
,
1176
1184
(
1997
).
11.
Z.
Gelbaum
and
M.
Titus
, “
Simulation of fractional Brownian surfaces via spectral synthesis on manifolds
,”
IEEE Trans. Image Process.
23
,
4383
4388
(
2014
).
12.
S.
Rostek
and
R.
Schöbel
, “
A note on the use of fractional Brownian motion for financial modeling
,”
Econ. Model.
30
,
30
35
(
2013
).
13.
K.
Maraj
,
D.
Szarek
,
G.
Sikora
, and
A.
Wyłomańska
, “
Time-averaged mean squared displacement ratio test for Gaussian processes with unknown diffusion coefficient
,”
Chaos
31
,
073120
(
2021
).
14.
W.
Xiao
,
W.
Zhang
,
X.
Zhang
, and
Y.
Wang
, “
Pricing currency options in a fractional Brownian motion with jumps
,”
Eco. Model.
27
,
935
942
(
2010
).
15.
D.
Ernst
,
M.
Hellmann
,
J.
Köhler
, and
M.
Weiss
, “
Fractional Brownian motion in crowded fluids
,”
Soft Matter
8
,
4886
(
2012
).
16.
F.
Höfling
and
T.
Franosch
, “
Anomalous transport in the crowded world of biological cells
,”
Rep. Prog. Phys.
76
,
046602
(
2013
).
17.
R.
Metzler
,
J.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
24164
(
2014
).
18.
D.
Szarek
,
K.
Maraj-Zygmat
,
G.
Sikora
,
D.
Krapf
, and
A.
Wylomanska
, “
Statistical test for anomalous diffusion based on empirical anomaly measure for Gaussian processes
,”
Comput. Stat. Data Anal.
168
,
107401
(
2022
).
19.
D.
Krapf
,
N.
Lukat
,
E.
Marinari
,
R.
Metzler
,
G.
Oshanin
,
C.
Selhuber-Unkel
,
A.
Squarcini
,
L.
Stadler
,
M.
Weiss
, and
X.
Xu
, “
Spectral content of a single non-Brownian trajectory
,”
Phys. Rev. X
9
,
011019
(
2019
).
20.
P.
Lévy
, Random Functions: General Theory with Special Reference to Laplacian Random Functions, University of California publications in statistics (University of California Press, 1953).
21.
D.
Marinucci
and
P.
Robinson
, “
Alternative forms of fractional Brownian motion
,”
J. Stat. Plann. Inference
80
,
111
122
(
1999
).
22.
Q.
Wei
,
W.
Wang
,
Y.
Tang
,
R.
Metzler
, and
A.
Chechkin
, “Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian motion, spurious nonergodicity and aging,”
Phys. Rev. E
111
,
014128
(
2025
).
23.
S. C.
Lim
and
L. P.
Teo
, “
Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation
,”
J. Stat. Mech.: Theory Exp.
2009
,
P08015
(
2009
).
24.
S.
Picozzi
and
B. J.
West
, “
Fractional Langevin model of memory in financial markets
,”
Phys. Rev. E
66
,
046118
(
2002
).
25.
A. A.
Sadoon
and
Y.
Wang
, “
Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live Escherichia coli
,”
Phys. Rev. E
98
,
042411
(
2018
).
26.
R.
Benelli
and
M.
Weiss
, “
From sub-to superdiffusion: Fractional Brownian motion of membraneless organelles in early C. elegans embryos
,”
New J. Phys.
23
,
063072
(
2021
).
27.
K.
Speckner
and
M.
Weiss
, “
Single-particle tracking reveals anti-persistent subdiffusion in cell extracts
,”
Entropy
23
,
892
(
2021
).
28.
A. G.
Cherstvy
,
S.
Thapa
,
C. E.
Wagner
, and
R.
Metzler
, “
Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels
,”
Soft Matter
15
,
2526
2551
(
2019
).
29.
C.
Beck
and
E. G.
Cohen
, “
Superstatistics
,”
Phys. A
322
,
267
275
(
2003
).
30.
C.
Beck
, “
Superstatistical Brownian motion
,”
Progress Theor. Phys. Suppl.
162
,
29
36
(
2005
).
31.
M. V.
Chubynsky
and
G. W.
Slater
, “
Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion
,”
Phys. Rev. Lett.
113
,
098302
(
2014
).
32.
R.
Metzler
and
A. V.
Chechkin
, “Non-Gaussian stochastic transport,” in Paolo Grigolini and 50 Years of Statistical Physics., edited by B. J. West and S. Bianco (Cambridge Scholars Publishing, 2023), pp. 71–93.
33.
M.
Balcerek
,
K.
Burnecki
,
S.
Thapa
,
A.
Wyłomańska
, and
A. V.
Chechkin
, “
Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions
,”
Chaos
32
,
093114
(
2022
).
34.
J.
Lévy-Véhel
and
R. F.
Peltier
, “Multifractional Brownian motion: Definition and preliminary results,” Rapport de recherche de l’INRIA 2645 (1995).
35.
A.
Ayache
and
M. S.
Taqqu
, “
Multifractional processes with random exponent
,”
Publicacions Matemàtiques
49
,
459
(
2005
).
36.
D.
Han
,
N.
Korabel
,
R.
Chen
,
M.
Johnston
,
A.
Gavrilova
,
V. J.
Allan
,
S.
Fedotov
, and
T. A.
Waigh
, “
Deciphering anomalous heterogeneous intracellular transport with neural networks
,”
eLife
9
,
e52224
(
2020
).
37.
N.
Korabel
,
D.
Han
,
A.
Taloni
,
G.
Pagnini
,
S.
Fedotov
,
V.
Allan
, and
T. A.
Waigh
, “
Local analysis of heterogeneous intracellular transport: Slow and fast moving endosomes
,”
Entropy
23
,
958
(
2021
).
38.
M.
Balcerek
,
A.
Wyłomańska
,
K.
Burnecki
,
R.
Metzler
, and
D.
Krapf
, “
Modelling intermittent anomalous diffusion with switching fractional Brownian motion
,”
New J. Phys.
25
,
103031
(
2023
).
39.
A.
Grzesiek
,
J.
Gajda
,
S.
Thapa
, and
A.
Wyłomańska
, “
Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics
,”
Chaos
34
,
043154
(
2024
).
40.
H.
Woszczek
,
A.
Chechkin
, and
A.
Wyłomańska
, “
Scaled Brownian motion with random anomalous diffusion exponent
,”
Commun. Nonlinear Sci. Numer. Simul.
140
(
1
),
108388
(
2025
).
41.
M.
dos Santos
,
L.
Menon
, and
D.
Cius
, “
Superstatistical approach of the anomalous exponent for scaled Brownian motion
,”
Chaos, Solitons Fractals
164
,
112740
(
2022
).
42.
M.
Arutkin
and
S.
Reuveni
, “
Doubly stochastic continuous time random walk
,”
Phys. Rev. Res.
6
,
l012033
(
2024
).
43.
Y.
Chen
,
X.
Wang
, and
M.
Ge
, “
Lévy-walk-like Langevin dynamics with random parameters
,”
Chaos
34
,
013109
(
2024
).
44.
A.
Maćkała
and
M.
Magdziarz
, “
Statistical analysis of superstatistical fractional Brownian motion and applications
,”
Phys. Rev. E
99
,
012143
(
2019
).
45.
W.
Wang
,
F.
Seno
,
I. M.
Sokolov
,
A. V.
Chechkin
, and
R.
Metzler
, “
Unexpected crossovers in correlated random-diffusivity processes
,”
New J. Phys.
22
,
083041
(
2020
).
46.
W.
Wang
,
A. G.
Cherstvy
,
A. V.
Chechkin
,
S.
Thapa
,
F.
Seno
,
X.
Liu
, and
R.
Metzler
, “
Fractional Brownian motion with random diffusivity: Emerging residual nonergodicity below the correlation time
,”
J. Phys. A: Math. Theor.
53
,
474001
(
2020
).
47.
I.
Eliazar
and
J.
Klafter
, “
Anomalous is ubiquitous
,”
Ann. Phys.
326
,
2517
2531
(
2011
).
48.
I.
Eliazar
,
Power Laws
(
Springer International Publishing
,
2020
).
49.
I.
Eliazar
and
J.
Klafter
, “
On the generation of anomalous and ultraslow diffusion
,”
J. Phys. A: Math. Theor.
44
(
40
),
405006
(
2011
).
50.
A.
Lasota
and
M. C.
Mackey
,
Chaos, Fractals, and Noise
(
Springer New York
,
1994
).
51.
E.
Parzen
, “
Conditions that a stochastic process be ergodic
,”
Ann. Math. Stat.
29
,
299
301
(
1958
).
52.
W.
Rudin
,
Real and Complex Analysis
, 3rd ed. (
McGraw-Hill Inc
,
1987
).
53.
R. L.
Schilling
and
L.
Partzsch
,
Brownian Motion: An Introduction to Stochastic Processes
(
De Gruyter
,
2012
).
54.
S. C.
Lim
, “
Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type
,”
J. Phys. A: Math. Gen.
34
,
1301
1310
(
2001
).
55.
A.
Khinchin
, Mathematical Foundations of Statistical Mechanics, Dover Books on Mathematics (Dover Publications, 1949).
56.
R.
Beals
and
R.
Wong
,
Special Functions: A Graduate Text
(
Cambridge University Press
,
2010
).
57.
A. V.
Chechkin
,
R.
Gorenflo
, and
I. M.
Sokolov
, “
Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
,”
Phys. Rev. E
66
,
046129
(
2002
).
58.
A. V.
Chechkin
,
V. Y.
Gonchar
,
R.
Gorenflo
,
N.
Korabel
, and
I. M.
Sokolov
, “
Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights
,”
Phys. Rev. E
78
,
021111
(
2008
).
59.
A.
Chechkin
,
I. M.
Sokolov
, and
J.
Klafter
, “Natural and Modified Forms of Distributed-Order Fractional Diffusion Equations,” in Fractional Dynamics (World Scientific, 2011), pp. 107–127.
60.
M.
Balcerek
,
K.
Burnecki
,
G.
Sikora
, and
A.
Wyłomańska
, “
Discriminating Gaussian processes via quadratic form statistics
,”
Chaos
31
,
063101
(
2021
).
61.
I.
Eliazar
, “
Beta Brownian motion
,”
J. Phys. A: Math. Theor.
57
,
25003
(
2024
).
62.
I.
Eliazar
, “
Power Brownian motion
,”
J. Phys. A: Math. Theor.
57
,
03LT01
(
2024
).
63.
A. L.
Stella
,
A.
Chechkin
, and
G.
Teza
, “
Anomalous dynamical scaling determines universal critical singularities
,”
Phys. Rev. Lett.
130
,
207104
(
2023
).
64.
A. L.
Stella
,
A.
Chechkin
, and
G.
Teza
, “
Universal singularities of anomalous diffusion in the Richardson class
,”
Phys. Rev. E
107
,
054118
(
2023
).
65.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
U.S. Government Printing Office
,
1968
), Vol. 55.
66.
A.
Mathai
,
R. K.
Saxena
, and
H. J.
Haubold
,
The H-Function
(
Springer, New York
,
2010
).
67.
A.
Prudnikov
,
Y.
Brychkov
, and
O.
Marichev
,
Integrals and Series. Volume 3: More Special Functions
(
Gordon and Breach, New York-London
,
1989
).
You do not currently have access to this content.