Transport through structures such as pores and ion channels is ubiquitous in nature. It has been intensively studied in recent years. Especially in biological cells, the movement of molecules through channel systems plays an essential role in controlling almost every physiological function of living organisms. The subject of our study is the kinetics of spherical particles passing through a conical pore restricted by absorbing and reflecting boundaries from a wider to a narrower end and vice versa. We study the properties of diffusion as a function of particle size with respect to pore width. Particles of different diameters are subjected to a random force. In addition to the mean squared displacement, which indicates the (effective) subdiffusive or superdiffusive character of the motion (depending on whether the absorbing boundary is located at the narrow or wide end of the channel), we measured the mean and median of the first passage times. Additional in silico experiments allowed us to thoroughly discuss the interplay of entropic forces and boundary conditions influencing the obtained results.

1.
A.
Arango-Restrepo
and
J. M.
Rubi
,
J. Chem. Phys.
153
,
034108
(
2020
).
2.
B.
Hille
,
Ion Channels of Excitable Membranes
(
Sinauer Associates
,
Sunderland
,
2001
).
3.
K.
Liu
,
C.
Pan
,
A.
Kuhn
,
A. P.
Nievergelt
,
G. E.
Fantner
,
O.
Milenkovic
, and
A.
Radenovic
,
Nat. Commun.
10
,
3
(
2019
).
4.
P.
Goyal
,
P.
Goyal
,
P. V.
Krasteva
,
N.
Van Gerven
,
F.
Gubellini
,
I.
Van den Broeck
,
A.
Troupiotis-Tsaïlaki
,
W.
Jonckheere
,
G.
Péhau-Arnaudet
,
J. S.
Pinkner
,
M. R.
Chapman
,
S. J.
Hultgren
,
S.
Howorka
,
R.
Fronzes
, and
H.
Remaut
,
Nature
516
,
250
253
(
2014
).
5.
H.
Brinkerhoff
,
A. S.
Kang
,
J.
Liu
,
A.
Aksimentiev
, and
C.
Dekker
,
Science
374
,
1509
(
2021
).
6.
E. C.
Yusko
,
B. R.
Bruhn
,
O. M.
Eggenberger
,
J.
Houghtaling
,
R. C.
Rollings
,
N. C.
Walsh
,
S.
Nandivada
,
M.
Pindrus
,
A. R.
Hall
,
D.
Sept
et al.,
Nat. Nanotechnol.
12
,
360
(
2017
).
7.
J.
Houghtaling
,
C.
Ying
,
O. M.
Eggenberger
,
A.
Fennouri
,
S.
Nandivada
,
M.
Acharjee
,
J.
Li
,
A. R.
Hall
, and
M.
Mayer
,
ACS Nano
13
,
5231
(
2019
).
8.
Y.
Qiu
,
P.
Hinkle
,
C.
Yang
,
H. E.
Bakker
,
M.
Schiel
,
H.
Wang
,
D.
Melnikov
,
M.
Gracheva
,
M. E.
Toimil-Molares
,
A.
Imhof
, and
Z. S.
Siwy
,
ACS Nano
9
,
4390
(
2015
).
9.
R.
Maugi
,
P.
Hauer
,
J.
Bowen
,
E.
Ashman
,
E.
Hunsicker
, and
M.
Platt
,
Nanoscale
12
,
262
(
2020
).
10.
M.
Spanner
,
F.
Höfling
,
S. C.
Kapfer
,
K. R.
Mecke
,
G. E.
Schröder-Turk
, and
T.
Franosch
,
Phys. Rev. Lett.
116
,
060601
(
2016
).
11.
12.
X.
Hou
,
W.
Guo
, and
L.
Jiang
,
Chem. Soc. Rev.
40
,
2385
(
2011
).
13.
S.
Akhtarian
,
S.
Miri
,
A.
Doostmohammadi
,
S. K.
Brar
, and
P.
Rezai
,
Bioengineered
12
,
9189
(
2021
).
14.
A. J.
Schmeltzer
,
E. M.
Peterson
,
J. M.
Harris
,
D. K.
Lathrop
,
S. R.
German
, and
H. S.
White
,
ACS Nano
18
,
7241
(
2024
).
15.
S.
Howorka
and
Z.
Siwy
,
Chem. Soc. Rev.
38
,
2360
(
2009
).
16.
K.
Alim
,
S.
Parsa
,
D. A.
Weitz
, and
M. P.
Brenner
,
Phys. Rev. Lett.
119
,
144501
(
2017
).
17.
J.
Janczura
,
M.
Magdziarz
, and
R.
Metzler
,
Chaos
33
,
103125
(
2023
).
18.
R.
Zwanzig
,
J. Phys. Chem.
96
,
3926
(
1992
).
19.
D.
Reguera
and
J. M.
Rubí
,
Phys. Rev. E
64
,
061106
(
2001
).
20.
P.
Kalinay
and
J.
Percus
,
J. Phys. Chem.
122
,
204701
(
2005
).
21.
A. M.
Berezhkovskii
,
M. A.
Pustovoit
, and
S. M.
Bezrukov
,
J. Chem. Phys.
126
,
134706
(
2007
).
22.
L.
Dagdug
,
M.-V.
Vazquez
,
A. M.
Berezhkovskii
, and
S. M.
Bezrukov
,
J. Chem. Phys.
133
,
034707
(
2010
).
23.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
,
J. Chem. Phys.
147
,
134104
(
2017
).
24.
M.
Jacobs
,
Diffusion Processes
(
Springer
,
New York
,
1967
).
25.
L.
Dagdug
,
A. A.
García-Chung
, and
G.
Chacón-Acosta
,
J. Chem. Phys.
145
,
074105
(
2016
).
26.
A.
Ledesma-Durán
,
S. I.
Hernández
, and
I.
Santamaría-Holek
,
Phys. Rev. E
95
,
052804
(
2017
).
27.
Y.
Chávez
,
G.
Chacón-Acosta
, and
L.
Dagdug
,
J. Chem. Phys.
148
,
214106
(
2018
).
28.
D.
Reguera
,
A.
Luque
,
P. S.
Burada
,
G.
Schmid
,
J. M.
Rubí
, and
P.
Hänggi
,
Phys. Rev. Lett.
108
,
020604
(
2012
).
29.
G. W.
Slater
,
H. L.
Guo
, and
G. I.
Nixon
,
Phys. Rev. Lett.
78
,
1170
(
1997
).
30.
C.
Kettner
,
P.
Reimann
,
P.
Hänggi
, and
F.
Müller
,
Phys. Rev. E
61
,
312
(
2000
).
31.
M.
Bauer
,
A.
Godec
, and
R.
Metzler
,
Phys. Chem. Chem. Phys.
16
,
6118
(
2014
).
32.
M.
Schiel
and
Z. S.
Siwy
,
J. Phys. Chem. C
118
,
19214
(
2014
).
33.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
34.
I. M.
Sokolov
and
J.
Klafter
,
Chaos
15
,
026103
(
2005
).
35.
R.
Metzler
,
J.-H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
,
Phys. Chem. Chem. Phys.
16
,
24128
(
2014
).
36.
L. F.
Richardson
,
Proc. R. Soc. London Ser. A
110
,
709
(
1926
).
37.
J.-H.
Jeon
,
N.
Leijnse
,
L. B.
Oddershede
, and
R.
Metzler
,
New J. Phys.
15
,
045011
(
2013
).
38.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6438
(
2011
).
39.
M.
Balcerek
,
K.
Burnecki
,
S.
Thapa
,
A.
Wyłomańska
, and
A.
Chechkin
,
Chaos
32
,
093114
(
2022
).
40.
R.
Metzler
and
J.
Klafter
,
J. Phys. A: Math. Gen.
37
,
R161
(
2004
).
41.
A.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
,
Biophys. J.
106
,
L09
(
2014
).
42.
M.
Cieśla
,
B.
Dybiec
,
M.
Krasowska
,
Z.
Siwy
, and
A.
Strzelewicz
,
Molecules
29
,
3795
(
2024
).
43.
P.
Kalinay
and
J.
Percus
,
Phys. Rev. E
74
,
041203
(
2006
).
44.
D.
Reguera
and
J.
Rubi
,
Phys. Rev. E
64
,
061106
(
2001
).
45.
D.
Reguera
,
G.
Schmid
,
P. S.
Burada
,
J.
Rubi
,
P.
Reimann
, and
P.
Hänggi
,
Phys. Rev. Lett.
96
,
130603
(
2006
).
46.
M.
Mangeat
,
T.
Guérin
, and
D. S.
Dean
,
J. Stat. Mech.
2017
,
123205
(
2017
).
47.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences
(
Springer Verlag
,
Berlin
,
2009
).
48.
D. R.
Cox
and
H. D.
Miller
,
The Theory of Stochastic Processes
(
Chapman and Hall
,
London
,
1965
).
49.
A. V.
Chechkin
,
R.
Metzler
,
V. Y.
Gonchar
,
J.
Klafter
, and
L. V.
Tanatarov
,
J. Phys. A: Math. Gen.
36
,
L537
(
2003
).
You do not currently have access to this content.