Telegraphers’ equation perturbed by a uniformly moving external harmonic impact is investigated to uncover information useful for distinguishing properties of the time evolution patterns that describe either memoryless or memory-dependent modeling of transport phenomena. Memory effects are incorporated into telegraphers’ equation by smearing the first- and second-order time derivatives so that the memory kernel smearing the second-order time derivative acts as the smeared derivative of the smeared first-order time derivative. Such a generalized telegraphers’ equation (abbreviated as GTE) is solved under initial conditions that specify the values of the solutions and their time derivatives taken at the initial time and boundary conditions that require the sought solutions to vanish either at the x space infinity or the ( + l ) / ( l ) boundaries of a compact domain. The question is which solutions would be classified as traveling or standing waves. To answer this, we consider the Doppler effect and investigate how the frequency and velocity of external sources influence the obtained solutions. Using the short-time Fourier transform allows us to advance the problem and shows that infinite domain solutions to the GTEs, provided by a model example involving the Caputo fractional derivatives C D t 2 α and C D t α with 0 < α 1, exhibit a kind of velocity-dependent Doppler-like frequency shift if 1 2 < α 1. The effect remains unnoticed if 0 < α 1 2. This confirms our previous hypothesis that the emergence of wave-like effects in solutions of fractional equations is related to the occurrence of fractional time derivatives of the order greater than 1.

1.
G.
Cookson
,
The Cable: The Wire That Changed the World
(
Tempus Publishing Limited
,
Gloucestershire
,
2003
).
2.
O.
Heaviside
, “
On induction between parallel wires
,”
J. Soc. Telegraph Eng.
9
(
34
),
427
458
(
1880
).
3.
L.
Seccia
,
T.
Ruggeri
, and
A.
Muracchini
, “
Second sound and multiple shocks in superfluid helium
,”
Z. Angen. Math. Phys.
60
,
1074
1094
(
2009
).
4.
W.
Dai
,
H.
Wang
,
P. M.
Jordan
,
R. E.
Mickens
, and
B.
A.
, “
A mathematical model for skin burn injury induced by radiation heating
,”
Int. J. Heat Mass Transf.
51
,
5497
5510
(
2008
).
5.
Y.
Zhang
, “
Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues
,”
Int. J. Heat Mass Transf.
52
,
4829
4834
(
2009
).
6.
Z.
Ding
,
J.
Zhou
,
B.
Song
,
V.
Chiloyan
,
M.
Li
,
T. H.
Liu
, and
G.
Chen
, “
Phonon hydrodynamic heat conduction and Knudsen minimum in graphite
,”
Nano Lett.
18
,
638
649
(
2018
).
7.
L.
Lindsay
,
A.
Katre
,
A.
Cepellotti
, and
N.
Mingo
, “
Perspective on ab initio phonon thermal transport
,”
J. Appl. Phys.
126
,
050902
(
2019
).
8.
M.
Simoncelli
,
N.
Marzari
, and
A.
Cepellotti
, “
Generalization of Fourier’s law into viscous heat equations
,”
Phys. Rev. X
10
,
011019
(
2020
).
9.
C. R.
Cattaneo
, “
Sulla conduzione del calore
,”
Atti Sem. Mat. Fis. Univ. Modena
3
,
83
(
1948
).
10.
C. R.
Cattaneo
, “
Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanee’
,”
C. R. Acad. Sci.
247
,
431
(
1958
).
11.
P.
Vernotte
, “
Les paradoxes de la théories continue de l’equation de la chaleur
,”
C. R. Acad. Sci. Paris
246
,
3154
3155
(
1958
).
12.
S.
Goldstein
, “
On diffusion by discontinuous movements, and on the telegraphers’ equation
,”
Q. J. Mech. Appl. Math.
4
(
2
),
129
(
1951
).
13.
M.
Kac
, “
A stochastic model related to the telegrapher’s equation
,”
Rocky Mount. J. Math.
4
,
497
(
1974
).
14.
J.
Masoliver
,
K.
Lindenberg
, and
G. H.
Weiss
, “
A continuous-time generalization of the persistent random walk
,”
Physica A
157
,
891
(
1989
).
15.
G. H.
Weiss
, “
Some applications of persistent random walks and the telegrapher’s equation
,”
Physica A
311
,
381
(
2002
).
16.
J.
Masoliver
and
K.
Lindenberg
, “
Continuous time persistent random walk: A review and some generalizations
,”
Eur. Phys. J. B
90
,
107
(
2017
).
17.
K.
Górska
,
A.
Horzela
,
E. K.
Lenzi
,
G.
Pagnini
, and
T.
Sandev
, “
Generalized Cattaneo (telegrapher’s) equation in modeling anomalous diffusion phenomena
,”
Phys. Rev. E
102
,
022128
(
2020
).
18.
A.
Compte
and
R.
Metzler
, “
The generalized Cattaneo equation for the description of anomalous transport processes
,”
J. Phys. A: Math. Gen.
30
,
7277
(
1997
).
19.
E.
Awad
, “
On the time-fractional Cattaneo equation of distributed order
,”
Physica A
518
,
210
(
2019
).
20.
J.
Masoliver
, “
Fractional telegrapher’s equation from fractional persistent random walks
,”
Phys. Rev. E
93
,
052107
(
2016
).
21.
E.
Orsingher
and
L.
Beghin
, “
Time-fractional telegraph equations and telegraph process with Brownian time
,”
Probab. Theory Relat. Fields
128
,
141
(
2024
).
22.
Y.
Povstenko
,
Fractional Thermoelasticity
(
Springer
,
Cham
,
2024
).
23.
T.
Kosztołowicz
, “
Cattaneo-type subdiffusion-reaction equation
,”
Phys. Rev. E
90
,
042151
(
2014
).
24.
K. D.
Lewandowska
and
T.
Kosztołowicz
, “
Application of generalized Cattaneo equation to model subdiffusion impedance
,”
Acta Phys. Pol. B
39
(
5
),
1211
(
2008
).
25.
A.
Madhukar
,
Y.
Park
,
W.
Kim
,
H. J.
Sunaryanto
,
R.
Berlin
,
L. P.
Chamorro
,
J.
Bentsman
, and
M.
Ostoja-Starzewski
, “
Heat conduction in porcine muscle and blood: Experiments and time-fractional telegraphers’ equation model
,”
J. R. Soc. Interface
16
,
20190726
(
2019
).
26.
The solution of Eq. (1) depends on the kernel functions η and γ. However, if Eq. (6) is satisfied, these functions are related to each other, which enables us to simplify formulas we adopt for u ( η ^ , γ ^ ; x , t ) the notation u ( γ ^ ; x , t ). The “hat” symbol refers to the Laplace transform.
27.
T.
Pietrzak
,
A.
Horzela
, and
K.
Górska
, “
The generalized telegraph equation with moving harmonic source: Solvability using the integral decomposition technique and wave aspects
,”
Int. J. Heat Mass Transf.
225
,
125373
(
2024
).
28.
Y.
Povstenko
and
M.
Ostoja-Starzewski
, “
Doppler effect described by the solutions of the Cattaneo telegraph equation
,”
Acta Mech.
232
,
725
740
(
2021
).
29.
K.
Górska
, “
Integral decomposition for the solutions of the generalized Cattaneo equation
,”
Phys. Rev. E
104
,
024113
(
2021
).
30.
K.
Górska
and
A.
Horzela
, “
Subordination and memory dependent kinetics in diffusion and relaxation phenomena
,”
Fract. Calcul. Appl. Anal.
26
,
480
(
2023
).
31.
The LF transform
u ^ ~ ( γ ^ ; κ , s ) = e i κ x [ 0 u ( γ ^ ; x , t ) e s t d t ] d x .
Notice that the order of taking the Fourier and Laplace transform is arbitrary because the coordinates x and t commute to each other.
32.
A. M.
Efros
, “
The application of the operational calculus to the analysis
,”
Mat. Sb.
42
,
699
(
1935
). in Russian.
33.
Ł.
Włodarski
, “
Sur une formule de Efros
,”
Stud. Math.
13
,
183
(
1952
).
34.
U.
Graf
,
Applied Laplace Transforms and z-Transforms for Sciences and Engineers
(
Birkhäuser
,
Basel
,
2004
).
35.
A.
Apelblat
and
F.
Mainardi
, “
Application of the Efros theorem to the function represented by the inverse Laplace transform of s μ exp ( s ν )
,”
Symmetry
13
,
354
(
2021
).
36.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill Book Co
,
New York
,
1941
).
37.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill Book Co
,
New York
,
1953
).
38.
H.
Pollard
, “
The representation of e x λ as a Laplace integral
,”
Bull. Am. Math. Soc.
52
,
908
(
1946
).
39.
J.
Chen
,
F.
Liu
, and
V.
Anh
, “
Analytical solution for the time-fractional telegraphers’ equation by the method of separating variables
,”
J. Math. Anal. Appl.
338
,
1364
1377
(
2008
).
40.
Y.
Luchko
and
R.
Gorenflo
, “
An operational method for solving fractional differential equations with the Caputo derivatives
,”
Acta Math. Vietnam
24
,
207
233
(
1999
).
41.
B.
Boashash
,
Time-Frequency Analysis: Theory and Applications
(
Elsevier Science
,
2003
).
42.
Y.
Povstenko
and
M.
Ostoja-Starzewski
, “
Fractional telegraph equation under moving time-harmonic impact
,”
Int. J. Heat Mass Transf.
182
,
121958
(
2022
).
43.
A. P.
Prudnikov
,
Y.
Brychkov
, and
O.
Marichev
,
Integrals and Series. Inverse Laplace Transforms
(
Gordon and Breach
,
New York
,
1992
), Vol. 5.
44.
E.
Bazhlekova
, “
Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives
,”
Fract. Calcul. Appl. Anal.
24
,
88
111
(
2021
).
45.
K.
Górska
,
A.
Horzela
,
A.
Lattanzi
, and
T. K.
Pogány
, “
On complete monotonicity of three parameter Mittag–Leffler function
,”
Appl. Anal. Discrete Math.
15
,
118
128
(
2021
).
You do not currently have access to this content.