We report the effect of nonlinear bias of the frequency of collective oscillations of sin-coupled phase oscillators subject to individual asymmetric Cauchy noises. The noise asymmetry makes the Ott–Antonsen ansatz inapplicable. We argue that, for all stable non-Gaussian noises, the tail asymmetry is not only possible (in addition to the trivial shift of the distribution median) but also generic in many physical and biophysical setups. For the theoretical description of the effect, we develop a mathematical formalism based on the circular cumulants. The derivation of rigorous asymptotic results can be performed on this basis but seems infeasible in traditional terms of the circular moments (the Kuramoto–Daido order parameters). The effect of the entrainment of individual oscillator frequencies by the global oscillations is also reported in detail. The accuracy of theoretical results based on the low-dimensional circular cumulant reductions is validated with the high-accuracy “exact” solutions calculated with the continued fraction method.

1.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
(
16
),
2391
2394
(
1993
).
2.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
(
3–4
),
197
253
(
1994
).
3.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
(
26
),
264103
(
2008
).
4.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
,”
Chaos
19
(
4
),
043104
(
2009
).
5.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
6.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
(
2
),
023117
(
2009
).
7.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
(
8
),
084103
(
2008
).
8.
K. H.
Nagai
and
H.
Kori
, “
Noise-induced synchronization of a large population of globally coupled nonidentical oscillators
,”
Phys. Rev. E
81
(
6
),
065202
(
2010
).
9.
W.
Braun
,
A.
Pikovsky
,
M. A.
Matias
, and
P.
Colet
, “
Global dynamics of oscillator populations under common noise
,”
Europhys. Lett.
99
(
2
),
20006
(
2012
).
10.
A. V.
Pimenova
,
D. S.
Goldobin
,
M.
Rosenblum
, and
A.
Pikovsky
, “
Interplay of coupling and common noise at the transition to synchrony in oscillator populations
,”
Sci. Rep.
6
,
38518
(
2016
).
11.
A. V.
Dolmatova
,
D. S.
Goldobin
, and
A.
Pikovsky
, “
Synchronization of coupled active rotators by common noise
,”
Phys. Rev. E
96
(
6
),
062204
(
2017
).
12.
O. E.
Omel’chenko
and
E.
Knobloch
, “
Chimerapedia: Coherence–incoherence patterns in one, two and three dimensions
,”
New J. Phys.
21
,
093034
(
2019
).
13.
V.
Klinshov
and
I.
Franović
, “
Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators
,”
Phys. Rev. E
100
(
6
),
062211
(
2019
).
14.
B.
Yasmine
,
Y.
Li
,
W.
Jia
, and
Y.
Xu
, “
Synchronization in the network-frustrated coupled oscillator with attractive-repulsive frequencies
,”
Phys. Rev. E
106
(
5
),
054212
(
2022
).
15.
D.
Pazó
and
E.
Montbrió
, “
Low-dimensional dynamics of populations of pulsecoupled oscillators
,”
Phys. Rev. X
4
(
1
),
011009
(
2014
).
16.
C. R.
Laing
, “
Exact neural fields incorporating gap junctions
,”
SIAM J. Appl. Dyn. Syst.
14
(
4
),
1899
1929
(
2015
).
17.
Á.
Byrne
,
D.
Avitabile
, and
S.
Coombes
, “
Next-generation neural field model: The evolution of synchrony within patterns and waves
,”
Phys. Rev. E
99
(
1
),
012313
(
2019
).
18.
S.
Coombes
, “
Next generation neural population models
,”
Front. Appl. Math. Stat.
9
,
1128224
(
2023
).
19.
M.
di Volo
and
A.
Torcini
, “
Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses
,”
Phys. Rev. Lett.
121
(
12
),
128301
(
2018
).
20.
I. V.
Tyulkina
,
D. S.
Goldobin
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz
,”
Phys. Rev. Lett.
120
(
26
),
264101
(
2018
).
21.
D. S.
Goldobin
and
A. V.
Dolmatova
, “
Ott-Antonsen ansatz truncation of a circular cumulant series
,”
Phys. Rev. Res.
1
(
3
),
033139
(
2019
).
22.
I.
Ratas
and
K.
Pyragas
, “
Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons
,”
Phys. Rev. E
100
(
5
),
052211
(
2019
).
23.
M.
di Volo
,
M.
Segneri
,
D. S.
Goldobin
,
A.
Politi
, and
A.
Torcini
, “
Coherent oscillations in balanced neural networks driven by endogenous fluctuations
,”
Chaos
32
(
2
),
023120
(
2022
).
24.
T.
Zheng
,
K.
Kotani
, and
Y.
Jimbo
, “
Distinct effects of heterogeneity and noise on gamma oscillation in a model of neuronal network with different reversal potential
,”
Sci. Rep.
11
,
12960
(
2021
).
25.
D. S.
Goldobin
, “
Mean-field models of populations of quadratic integrate-and-fire neurons with noise on the basis of the circular cumulant approach
,”
Chaos
31
(
8
),
083112
(
2021
).
26.
R.
Capocelli
and
L.
Ricciardi
, “
Diffusion approximation and first passage time problem for a model neuron
,”
Kybernetik
8
,
214
223
(
1971
).
27.
H. C.
Tuckwell
,
Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories
(
Cambridge University Press
,
1988
), Vol. 2.
28.
R.
Tönjes
and
A.
Pikovsky
, “
Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise
,”
Phys. Rev. E
102
(
5
),
052315
(
2020
).
29.
B.
Pietras
,
R.
Cestnik
, and
A.
Pikovsky
, “
Exact finite-dimensional description for networks of globally coupled spiking neurons
,”
Phys. Rev. E
107
(
2
),
024315
(
2023
).
30.
V.
Pyragas
and
K.
Pyragas
, “
Effect of Cauchy noise on a network of quadratic integrate-and-fire neurons with non-Cauchy heterogeneities
,”
Phys. Lett. A
480
,
128972
(
2023
).
31.
V. A.
Kostin
,
V. O.
Munyaev
,
G. V.
Osipov
, and
L. A.
Smirnov
, “
Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise
,”
Chaos
33
(
8
),
083155
(
2023
).
32.
V. M.
Zolotarev
, One-dimensional Stable Distribution, Translations of Mathematical Monographs Vol. 65 (American Mathematical Society, Providence, 1986).
33.
D. S.
Goldobin
,
M.
di Volo
, and
A.
Torcini
, “
Discrete synaptic events induce global oscillations in balanced neural networks
,”
Phys. Rev. Lett.
133
(
23
),
238401
(
2024
).
34.
J.
Klafter
,
A.
Blumen
, and
M. F.
Shlesinger
, “
Stochastic pathway to anomalous diffusion
,”
Phys. Rev. A
35
(
7
),
3081
3085
(
1987
).
35.
D. S.
Goldobin
and
A. V.
Dolmatova
, “
Interplay of the mechanisms of synchronization by common noise and global coupling for a general class of limit-cycle oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
75
,
94
108
(
2019
).
36.
S.
Petrovskii
and
A.
Morozov
, “
Dispersal in a statistically structured population: Fat tails revisited
,”
Am. Nat.
173
(
2
),
278
289
(
2009
).
37.
B.
Mandelbrot
, “
New methods in statistical economics
,”
J. Pol. Econ.
71
(
5
),
421
440
(
1963
).
38.
M. A.
Simkowitz
and
W. L.
Beedles
, “
Asymmetric stable distributed security returns
,”
J. Am. Stat. Assoc.
75
(
370
),
306
312
(
1980
).
39.
M. I.
Rabinovich
and
D. I.
Trubetskov
, Oscillations and Waves: In Linear and Nonlinear Systems, Mathematics and Its Applications Vol. 50 (Springer Netherlands, Dordrecht, 1989).
40.
W. E.
Lamb
, Jr.
, “
Theory of an optical maser
,”
Phys. Rev.
134
,
A1429
A1450
(
1964
).
41.
P.
Lloyd
, “
Exactly solvable model of electronic states in a three-dimensional disordered Hamiltonian: Non-existence of localized states
,”
J. Phys. C
2
(
10
),
1717
1725
(
1969
).
42.
D. S.
Goldobin
and
A.
Pikovsky
, “
Synchronization and desynchronization of self-sustained oscillators by common noise
,”
Phys. Rev. E
71
(
4
),
045201(R)
(
2005
).
43.
J. A.
Roberts
,
T. W.
Boonstra
, and
M.
Breakspear
, “
The heavy tail of the human brain
,”
Curr. Opin. Neurobiol.
31
,
164
172
(
2015
).
44.
A. V.
Dolmatova
,
I. V.
Tyulkina
, and
D. S.
Goldobin
, “
Circular cumulant reductions for macroscopic dynamics of oscillator populations with non-Gaussian noise
,”
Chaos
33
(
11
),
113102
(
2023
).
45.
Z.
Wang
,
Y.
Xu
,
Y.
Li
,
T.
Kapitaniak
, and
J.
Kurths
, “
Chimera states in coupled Hindmarsh-Rose neurons with α-stable noise
,”
Chaos, Solitons Fractals
148
,
110976
(
2021
).
46.
Z.
Wang
,
Y.
Li
,
Y.
Xu
,
T.
Kapitaniak
, and
J.
Kurths
, “
Coherence-resonance chimeras in coupled HR neurons with alpha-stable Lévy noise
,”
J. Stat. Mech.: Theory Exp.
2022
,
053501
.
47.
Y.
Li
,
Y.
Xu
,
J.
Kurths
, and
X.
Yue
, “
Lévy-noise-induced transport in a rough triple-well potential
,”
Phys. Rev. E
94
(
4
),
042222
(
2016
).
48.
E.
Rybalova
,
N.
Nikishina
, and
G.
Strelkova
, “
Controlling spatiotemporal dynamics of neuronal networks by Lévy noise
,”
Chaos
34
(
4
),
041103
(
2024
).
49.
E.
Rybalova
,
A.
Ryabov
,
S.
Muni
, and
G.
Strelkova
, “
Lévy noise-induced coherence resonance in neural maps
,”
Chaos, Solitons Fractals
186
,
115210
(
2024
).
50.
E.
Rybalova
,
V.
Averyanov
,
R.
Lozi
, and
G.
Strelkova
, “
Peculiarities of the spatio-temporal dynamics of a Hénon-Lozi map network in the presence of Lévy noise
,”
Chaos, Solitons Fractals
184
,
115051
(
2024
).
51.
D. S.
Goldobin
, “
Interspike interval statistics for quadratic integrate-and-fire neurons subject to alpha-stable noise
,”
Cybern. Phys.
13
(
3
),
206
210
(
2024
).
52.
V. V.
Klinshov
and
S. Y.
Kirillov
, “
Shot noise in next-generation neural mass models for finite-size networks
,”
Phys. Rev. E
106
(
6
),
L062302
(
2022
).
53.
V.
Klinshov
,
P.
Smelov
, and
S. Y.
Kirillov
, “
Constructive role of shot noise in the collective dynamics of neural networks
,”
Chaos
33
(
6
),
061101
(
2023
).
54.
A. V.
Chechkin
,
J.
Klafter
,
V.
Yu. Gonchar
,
R.
Metzler
, and
L. V.
Tanatarov
, “
Bifurcation, bimodality, and finite variance in confined Lévy flights
,”
Phys. Rev. E
67
(
1
),
010102(R)
(
2003
).
55.
R.
Toenjes
,
I. M.
Sokolov
, and
E. B.
Postnikov
, “
Nonspectral relaxation in one dimensional ornstein-uhlenbeck processes
,”
Phys. Rev. Lett.
110
(
15
),
150602
(
2013
).
56.
D. S.
Goldobin
,
E. V.
Permyakova
, and
L. S.
Klimenko
, “
Macroscopic behavior of populations of quadratic integrate-and-fire neurons subject to non-Gaussian white noise
,”
Chaos
34
(
1
),
013121
(
2024
).
57.
D. S.
Goldobin
,
I. V.
Tyulkina
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Collective mode reductions for populations of coupled noisy oscillators
,”
Chaos
28
(
10
),
101101
(
2018
).
58.
D. S.
Goldobin
, “
Relationships between the distribution of Watanabe-Strogatz variables and circular cumulants for ensembles of phase elements
,”
Fluct. Noise Lett.
18
(
2
),
1940002
(
2019
).
59.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics, Springer Lecture Notes Physics Vol. 39, edited by H. Araki (Springer, New York, 1975), p. 420.
60.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer
,
Berlin
,
1984
).
61.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
185
(
2005
).
62.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys.
76
(
3
),
576
581
(
1986
).
63.
A. Y.
Khinchin
,
Continued Fractions
(
University of Chicago Press
,
Chicago
,
1964
).
64.
E.
Montbrió
and
D.
Pazó
, “
Exact mean-field theory explains the dual role of electrical synapses in collective synchronization
,”
Phys. Rev. Lett.
125
(
24
),
248101
(
2020
).
65.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 2nd ed. (
Springer
,
Berlin
,
1997
).
You do not currently have access to this content.