We consider the standard nontwist map with strong dissipation that leads the system to a 1D circular map with a quadratic sinusoidal oscillation and two control parameters. The 2D Lyapunov and isoperiodic diagrams reveal a complex interplay between domains of periodicity embedded in regions dominated by quasiperiodic and chaotic behaviors. Arnold tongues and shrimp-like, among other sets of periodicities, compose this rich dynamical scenario in the parameter space. Cobwebs and bifurcation diagrams help reveal the behavior of attractors, including multistability, period-doubling, pitchfork bifurcations, as well as boundary, merging, and interior crises that influence the structures of periodicity. Furthermore, we bring to light the global organization of shrimp-like structures by carrying out a new concept of orbits, the extreme orbits, and announce that the fractal dimension, believed to be universal in the parameter space for decades, has its symmetry breaking in the vicinity of shrimp-like cascades.
Skip Nav Destination
Article navigation
February 2025
Research Article|
February 05 2025
Global dynamics and asymmetric fractal dimension in a nontwist circle map
Special Collection:
From Sand to Shrimps: In Honor of Professor Jason A. C. Gallas
R. Simile Baroni
;
R. Simile Baroni
a)
(Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing)
1
Instituto de Física, Universidade de São Paulo (USP)
, 05508-900 São Paulo, São Paulo, Brazil
2
Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP)
, 13506-900 Rio Claro, São Paulo, Brazil
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
R. Egydio de Carvalho
;
R. Egydio de Carvalho
(Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Writing – review & editing)
2
Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP)
, 13506-900 Rio Claro, São Paulo, Brazil
Search for other works by this author on:
Carlos E. P. Abreu
;
Carlos E. P. Abreu
(Data curation, Formal analysis, Investigation, Software)
3
Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, IFSULDEMINAS
, 37417-158 Campus Três Corações, Minas Gerais, Brazil
4
Departamento de Física, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP)
, 13506-900 Rio Claro, São Paulo, Brazil
Search for other works by this author on:
R. O. Medrano-T
R. O. Medrano-T
(Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing)
4
Departamento de Física, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP)
, 13506-900 Rio Claro, São Paulo, Brazil
5
Departamento de Física, Universidade Federal de São Paulo, UNIFESP
, 09913-030 Campus Diadema, São Paulo, Brazil
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]
Chaos 35, 023122 (2025)
Article history
Received:
September 13 2024
Accepted:
January 22 2025
Citation
R. Simile Baroni, R. Egydio de Carvalho, Carlos E. P. Abreu, R. O. Medrano-T; Global dynamics and asymmetric fractal dimension in a nontwist circle map. Chaos 1 February 2025; 35 (2): 023122. https://doi.org/10.1063/5.0238699
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
82
Views
Citing articles via
Rate-induced biosphere collapse in the Daisyworld model
Constantin W. Arnscheidt, Hassan Alkhayuon
Response to music on the nonlinear dynamics of human fetal heart rate fluctuations: A recurrence plot analysis
José Javier Reyes-Lagos, Hugo Mendieta-Zerón, et al.
Sex, ducks, and rock “n” roll: Mathematical model of sexual response
K. B. Blyuss, Y. N. Kyrychko
Related Content
Secondary nontwist phenomena in area-preserving maps
Chaos (September 2012)
Transport properties in nontwist area-preserving maps
Chaos (October 2009)
Ratchet current in nontwist Hamiltonian systems
Chaos (September 2020)