We consider the standard nontwist map with strong dissipation that leads the system to a 1D circular map with a quadratic sinusoidal oscillation and two control parameters. The 2D Lyapunov and isoperiodic diagrams reveal a complex interplay between domains of periodicity embedded in regions dominated by quasiperiodic and chaotic behaviors. Arnold tongues and shrimp-like, among other sets of periodicities, compose this rich dynamical scenario in the parameter space. Cobwebs and bifurcation diagrams help reveal the behavior of attractors, including multistability, period-doubling, pitchfork bifurcations, as well as boundary, merging, and interior crises that influence the structures of periodicity. Furthermore, we bring to light the global organization of shrimp-like structures by carrying out a new concept of orbits, the extreme orbits, and announce that the fractal dimension, believed to be universal in the parameter space for decades, has its symmetry breaking in the vicinity of shrimp-like cascades.

1.
J. B.
Weiss
, “
Transport and mixing in traveling waves
,”
Phys. Fluids A
3
,
1379
1384
(
1991
).
2.
J.
Howard
and
S.
Hohs
, “
Stochasticity and reconnection in Hamiltonian systems
,”
Phys. Rev. A
29
,
418
(
1984
).
3.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A universal concept in nonlinear sciences
, 1st ed. (Cambridge University Press, 2001).
4.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature
410
,
277
284
(
2001
).
5.
B. V.
Chirikov
, “
A universal instability of many-dimensional oscillator systems
,”
Phys. Rep.
52
,
263
379
(
1979
).
6.
D.
Del-Castillo-Negrete
and
P. J.
Morrison
, “
Chaotic transport by rossby waves in shear flow
,”
Phys. Fluids A
5
,
948
965
(
1992
).
7.
P.
Morrison
, “
Magnetic field lines, Hamiltonian dynamics, and nontwist systems
,”
Phys. Plasmas
7
,
2279
2289
(
2000
).
8.
R.
Egydio de Carvalho
and
A. O.
De Almeida
, “
Integrable approximation to the overlap of resonances
,”
Phys. Lett. A
162
,
457
463
(
1992
).
9.
A.
Wurm
,
A.
Apte
,
K.
Fuchss
, and
P.
Morrison
, “
Meanders and reconnection–collision sequences in the standard nontwist map
,”
Chaos
15
,
023108
(
2005
).
10.
D.
del Castillo-Negrete
,
J.
Greene
, and
P.
Morrison
, “
Area preserving nontwist maps: Periodic orbits and transition to chaos
,”
Physica D
91
,
1
23
(
1996
).
11.
P. J.
Morrison
, “
Hamiltonian description of the ideal fluid
,”
Rev. Mod. Phys.
70
,
467
(
1998
).
12.
L. K.
Kato
and
R.
Egydio de Carvalho
, “
Transport barriers with shearless attractors
,”
Phys. Rev. E
99
,
032218
(
2019
).
13.
R.
Simile Baroni
,
R.
Egydio de Carvalho
,
I. L.
Caldas
,
R. L.
Viana
, and
P. J.
Morrison
, “
Chaotic saddles and interior crises in a dissipative nontwist system
,”
Phys. Rev. E
107
,
024216
(
2023
).
14.
M.
Mugnaine
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech
,
R.
Egydio de Carvalho
, and
R. L.
Viana
, “
Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems
,”
Chaos
31
,
023125
(
2021
).
15.
R.
Simile Baroni
and
R.
Egydio de Carvalho
, “
Destruction and resurgence of the quasiperiodic shearless attractor
,”
Phys. Rev. E
104
,
014207
(
2021
).
16.
R.
Egydio de Carvalho
and
C. V.
Abud
, “
Robust attractor of non-twist systems
,”
Physica A
440
,
42
48
(
2015
).
17.
M.
Mugnaine
,
M. R.
Sales
,
J. D.
Szezech
, and
R. L.
Viana
, “
Dynamics, multistability, and crisis analysis of a sine-circle nontwist map
,”
Phys. Rev. E
106
,
1
12
(
2022
).
18.
Small denominators. I. Mapping of the circumference onto itself
,” in
Collected Works
, edited by A. Givental, Collected Works. edited by V. I. Arnold (Springer, Berlin, Heidelberg, 2009). Vol. 1.
19.
L.
Glass
and
R.
Perez
, “
Fine structure of phase locking
,”
Phys. Rev. Lett.
48
,
1772
(
1982
).
20.
J. A.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
21.
A. C.
Mathias
,
M.
Mugnaine
,
M. S.
Santos
,
J. D.
Szezech
,
I. L.
Caldas
, and
R. L.
Viana
, “
Fractal structures in the parameter space of nontwist area-preserving maps
,”
Phys. Rev. E
100
,
52207
(
2019
).
22.
D. R.
Da Costa
,
M.
Hansen
,
G.
Guarise
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps
,”
Phys. Lett. A
380
,
1610
1614
(
2016
).
23.
D. R.
da Costa
,
J. G.
Rocha
,
L. S.
de Paiva
, and
R. O.
Medrano-T
, “
Logistic-like and gauss coupled maps: The born of period-adding cascades
,”
Chaos, Solitons Fractals
144
,
110688
(
2021
).
24.
C. E. P.
Abreu
,
J. D. V.
Hermes
,
D. R.
da Costa
,
E. S.
Medeiros
, and
R. O.
Medrano-T
, “
Extreme fractal dimension at periodicity cascades in parameter spaces
,”
Phys. Rev. E
110
,
L032201
(
2024
).
25.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
2002
).
26.
N. B.
Slater
, “
The distribution of the integers N for which θ n < ϕ
,”
Math. Proc. Camb. Philos. Soc.
46
,
525
534
(
1950
).
27.
C. V.
Abud
and
I. L.
Caldas
, “
On Slater’s criterion for the breakup of invariant curves
,”
Physica D
308
,
34
39
(
2015
).
28.
J. D. V.
Hermes
,
M. A.
dos Reis
,
I. L.
Caldas
, and
E. D.
Leonel
, “
Break-up of invariant curves in the Fermi-Ulam model
,”
Chaos, Solitons Fractals
162
,
112410
(
2022
).
29.
J. D.
Farmer
, “
Sensitive dependence on parameters in nonlinear dynamics
,”
Phys. Rev. Lett.
55
,
351
(
1985
).
30.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Exterior dimension of fat fractals
,”
Phys. Lett. A
110
,
1
4
(
1985
).
31.
K. M.
Valsamma
,
K. B.
Joseph
, and
G.
Ambika
, “
Perturbative analysis of quasiperiodic route to chaos in the circle map
,”
Phys. Scr.
42
,
19
21
(
1990
).
32.
T. W.
Dixon
,
T.
Gherghetta
, and
B. G.
Kenny
, “
Universality in the quasiperiodic route to chaos
,”
Chaos
6
,
32
42
(
1996
).
33.
S.
Acharjee
,
N.
Dutta
,
R.
Devi
, and
A.
Boruah
, “
Nonlinear oscillations, chaotic dynamics, and stability analysis of bilayer graphene-like structures
,”
Chaos
33
,
013136
(
2023
).
34.
J. M.
Greene
, “
A method for determining a stochastic transition
,”
J. Math. Phys.
20
,
1183
1201
(
1978
).
35.
A. M.
Fox
and
J. D.
Meiss
, “
Critical invariant circles in asymmetric and multiharmonic generalized standard maps
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
1004
1026
(
2014
).
36.
L. H. A.
Monteiro
,
Sistemas dinâmicos
(
Editora Livraria da Física
,
2002
).
37.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Final state sensitivity: An obstruction to predictability
,”
Phys. Lett. A
99
,
415
418
(
1983
).
38.
B. R.
Hunt
and
E.
Ott
, “
Structure in the parameter dependence of order and chaos for the quadratic map
,”
J. Phys. A: Math. Gen.
30
,
7067
(
1997
).
39.
M.
Joglekar
,
E.
Ott
, and
J. A.
Yorke
, “
Scaling of chaos versus periodicity: How certain is it that an attractor is chaotic
?,”
Phys. Rev. Lett.
113
,
084101
(
2014
).
You do not currently have access to this content.