Many dynamical systems exhibit unexpected large amplitude excursions in the chronological progression of a state variable. In the present work, we consider the dynamics associated with the one-dimensional Higgs oscillator, which is realized through gnomonic projection of a harmonic oscillator defined on a spherical space of constant curvature onto a Euclidean plane, which is tangent to the spherical space. While studying the dynamics of such a Higgs oscillator subjected to damping and an external forcing, various bifurcation phenomena, such as symmetry breaking, period doubling, and intermittency crises are encountered. As the driven parameter increases, the route to chaos takes place via intermittency crisis, and we also identify the occurrence of extreme events due to the interior crisis. The study of probability distribution also confirms the occurrence of extreme events. Finally, we train the long short-term memory neural network model with the time-series data to forecast extreme events.

1.
P. M.
Mathews
and
M.
Lakshmanan
, “
On a unique nonlinear oscillator
,”
Q. Appl. Math.
32
,
215
218
(
1974
).
2.
P. M.
Mathews
and
M.
Lakshmanan
, “
A quantum-mechanically solvable nonpolynomial lagrangian with velocity-dependent interaction
,”
Nuovo Cimento A
26
,
299
316
(
1975
).
3.
P. W.
Higgs
, “
Dynamical symmetries in a spherical geometry. I
,”
J. Phys. A: Math. Gen.
12
,
309
(
1979
).
4.
M.
Lakshmanan
and
K.
Eswaran
, “
Quantum dynamics of a solvable nonlinear chiral model
,”
J. Phys. A: Math. Gen.
8
,
1658
(
1975
).
5.
M. F.
Rañada
and
M.
Santander
, “
On harmonic oscillators on the two-dimensional sphere S 2 and the hyperbolic plane H 2
,”
J. Math. Phys.
43
,
431
451
(
2002
).
6.
M.
Lakshmanan
and
V. K.
Chandrasekar
, “
Generating finite dimensional integrable nonlinear dynamical systems
,”
Eur. Phys. J. Spec. Top.
222
,
665
688
(
2013
).
7.
C.
Quesne
, “
Deformed shape invariance symmetry and potentials in curved space with two known eigenstates
,”
J. Math. Phys.
59
,
042104
(
2018
).
8.
A.
Ballesteros
,
A.
Enciso
,
F. J.
Herranz
, and
O.
Ragnisco
, “
Superintegrable anharmonic oscillators on n-dimensional curved spaces
,”
J. Nonlinear Math. Phys.
15
,
43
52
(
2008
).
9.
V.
Chithiika Ruby
and
M.
Lakshmanan
, “
On the classical and quantum dynamics of a class of nonpolynomial oscillators
,”
J. Phys. A: Math. Theor.
54
,
385301
(
2021
).
10.
V.
Chithiika Ruby
and
M.
Lakshmanan
, “
Liénard type nonlinear oscillators and quantum solvability
,”
Phys. Scr.
99
,
062004
(
2024
).
11.
T.
Hakobyan
,
A.
Nersessian
, and
V.
Yeghikyan
, “
The cuboctahedric Higgs oscillator from the rational Calogero model
,”
J. Phys. A: Math. Theor.
42
,
205206
(
2009
).
12.
V.
Mohammadi
,
S.
Aghaei
, and
A.
Chenaghlou
, “
Dirac equation in presence of the hartmann and Higgs oscillator superintegrable potentials with the spin and pseudospin symmetries
,”
Int. J. Mod. Phys. A
31
,
1650190
(
2016
).
13.
J. F.
Carinena
,
M. F.
Ranada
,
M.
Santander
, and
M.
Senthilvelan
, “
A non-linear oscillator with quasi-harmonic behaviour: Two-and n-dimensional oscillators
,”
Nonlinearity
17
,
1941
(
2004
).
14.
A.
Mahdifar
,
R.
Roknizadeh
, and
M.
Naderi
, “
Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator
,”
J. Phys. A: Math. Gen.
39
,
7003
(
2006
).
15.
O.
Evnin
and
R.
Nivesvivat
, “
AdS perturbations, isometries, selection rules and the Higgs oscillator
,”
JHEP
2016
,
1
25
(
2016
).
16.
A.
Venkatesan
and
M.
Lakshmanan
, “
Nonlinear dynamics of damped and driven velocity-dependent systems
,”
Phys. Rev. E
55
,
5134
(
1997
).
17.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
18.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Phys. D
7
,
181
200
(
1983
).
19.
C.
Grebogi
,
E.
Ott
,
F.
Romeiras
, and
J. A.
Yorke
, “
Critical exponents for crisis-induced intermittency
,”
Phys. Rev. A
36
,
5365
(
1987
).
20.
Y.
Pomeau
and
P.
Manneville
, “Intermittent transition to turbulence in dissipative dynamical systems,” in Universality in Chaos (Routledge, 2017), pp. 327–335.
21.
J.
Zamora-Munt
,
B.
Garbin
,
S.
Barland
,
M.
Giudici
,
J. R. R.
Leite
,
C.
Masoller
, and
J. R.
Tredicce
, “
Rogue waves in optically injected lasers: Origin, predictability, and suppression
,”
Phys. Rev. A
87
,
035802
(
2013
).
22.
S. L.
Kingston
,
K.
Thamilmaran
,
P.
Pal
,
U.
Feudel
, and
S. K.
Dana
, “
Extreme events in the forced Liénard system
,”
Phys. Rev. E
96
,
052204
(
2017
).
23.
A.
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
, “
Routes to extreme events in dynamical systems: Dynamical and statistical characteristics
,”
Chaos
30
,
063114
(
2020
).
24.
S. N.
Chowdhury
,
A.
Ray
,
S. K.
Dana
, and
D.
Ghosh
, “
Extreme events in dynamical systems and random walkers: A review
,”
Phys. Rep.
966
,
1
52
(
2022
).
25.
B.
Kaviya
,
R.
Gopal
,
R.
Suresh
, and
V. K.
Chandrasekar
, “
Route to extreme events in a parametrically driven position-dependent nonlinear oscillator
,”
Eur. Phys. J. Plus
138
,
36
(
2023
).
26.
A.
Saha
and
U.
Feudel
, “
Extreme events in Fitzhugh-Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
).
27.
A.
Saha
and
U.
Feudel
, “
Riddled basins of attraction in systems exhibiting extreme events
,”
Chaos
28
,
033610
(
2018
).
28.
S. D.
Vijay
,
K.
Thamilmaran
, and
A. I.
Ahamed
, “
Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model
,”
Nonlinear Dyn.
111
,
789
799
(
2023
).
29.
B.
Thangavel
,
S.
Srinivasan
, and
T.
Kathamuthu
, “
Extreme events in a forced BVP oscillator: Experimental and numerical studies
,”
Chaos, Solitons Fractals
153
,
111569
(
2021
).
30.
A.
Ray
,
A.
Mishra
,
D.
Ghosh
,
T.
Kapitaniak
,
S. K.
Dana
, and
C.
Hens
, “
Extreme events in a network of heterogeneous josephson junctions
,”
Phys. Rev. E
101
,
032209
(
2020
).
31.
G.
Fotopoulos
,
D. J.
Frantzeskakis
,
N. I.
Karachalios
,
P. G.
Kevrekidis
,
V.
Koukouloyannis
, and
K.
Vetas
, “
Extreme wave events for a nonlinear Schrödinger equation with linear damping and Gaussian driving
,”
Commun. Nonlinear Sci. Numer. Simul.
82
,
105058
(
2020
).
32.
S.
Kumarasamy
and
A. N.
Pisarchik
, “
Extreme events in systems with discontinuous boundaries
,”
Phys. Rev. E
98
,
032203
(
2018
).
33.
T. K.
Pal
,
A.
Ray
,
S.
Nag Chowdhury
, and
D.
Ghosh
, “
Extreme rotational events in a forced-damped nonlinear pendulum
,”
Chaos
33
,
063134
(
2023
).
34.
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Constant bias and weak second periodic forcing: Tools to mitigate extreme events
,”
Eur. Phys. J. Plus
136
,
817
(
2021
).
35.
C.
Bonatto
and
A.
Endler
, “
Extreme and superextreme events in a loss-modulated co 2 laser: Nonlinear resonance route and precursors
,”
Phys. Rev. E
96
,
012216
(
2017
).
36.
S.
Sudharsan
,
A.
Venkatesan
,
P.
Muruganandam
, and
M.
Senthilvelan
, “
Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential
,”
Eur. Phys. J. Plus
136
,
129
(
2021
).
37.
S.
Sudharsan
,
A.
Venkatesan
,
P.
Muruganandam
, and
M.
Senthilvelan
, “
Suppression of extreme events and chaos in a velocity-dependent potential system with time-delay feedback
,”
Chaos, Solitons Fractals
161
,
112321
(
2022
).
38.
M.
Roy
,
S.
Mandal
,
C.
Hens
,
A.
Prasad
,
N.
Kuznetsov
, and
M.
Dev Shrimali
, “
Model-free prediction of multistability using echo state network
,”
Chaos
32
,
101104
(
2022
).
39.
R.
Shashangan
,
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Mitigation of extreme events in an excitable system
,”
Eur. Phys. J. Plus
139
,
203
(
2024
).
40.
G.
Bastard
,
Wave Mechanics Applied to Semiconductor Heterostructures
(
John Wiley and Sons Inc.
,
New York
,
1990
).
41.
B.
Gönül
,
O.
Özer
,
B.
GönüL
, and
F.
Üzgün
, “
Exact solutions of effective-mass Schrödinger equations
,”
Mod. Phys. Lett. A
17
,
2453
2465
(
2002
).
42.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
,
255
260
(
2015
).
43.
M.
Mohri
,
A.
Rostamizadeh
, and
A.
Talwalkar
,
Foundations of Machine Learning
(
MIT Press
,
2018
).
44.
G.
Carleo
,
I.
Cirac
,
K.
Cranmer
,
L.
Daudet
,
M.
Schuld
,
N.
Tishby
,
L.
Vogt-Maranto
, and
L.
Zdeborová
, “
Machine learning and the physical sciences
,”
Rev. Mod. Phys.
91
,
045002
(
2019
).
45.
E.
Alpaydin
,
Introduction to Machine Learning
(
MIT Press
,
2020
).
46.
E.
Alpaydin
,
Machine Learning
(
MIT Press
,
2021
).
47.
L.
Ljung
, “Approaches to identification of nonlinear systems,” in Proceedings of the 29th Chinese Control Conference (IEEE, 2010), pp. 1–5.
48.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3932
3937
(
2016
).
49.
Y.
Tang
,
J.
Kurths
,
W.
Lin
,
E.
Ott
, and
L.
Kocarev
, “
Introduction to focus issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics
,”
Chaos
30
,
063151
(
2020
).
50.
S.
Pourmohammad Azizi
,
A.
Neisy
, and
S.
Ahmad Waloo
, “
A dynamical systems approach to machine learning
,”
Int. J. Comput. Methods
20
,
2350007
(
2023
).
51.
Y.
Pan
and
J.
Wang
, “
Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks
,”
IEEE Trans. Ind. Electron.
59
,
3089
3101
(
2011
).
52.
Q.
Liu
,
H.
Peng
,
L.
Long
,
J.
Wang
,
Q.
Yang
,
M. J.
Pérez-Jiménez
, and
D.
Orellana-Martín
, “
Nonlinear spiking neural systems with autapses for predicting chaotic time series
,”
IEEE Trans. Cybern.
54
,
1841–1853
(
2023
).
53.
J.
Meiyazhagan
,
S.
Sudharsan
, and
M.
Senthilvelan
, “
Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning
,”
Eur. Phys. J. B
94
,
156
(
2021
).
54.
R.
Chen
,
X.
Jin
,
S.
Laima
,
Y.
Huang
, and
H.
Li
, “
Intelligent modeling of nonlinear dynamical systems by machine learning
,”
Int. J. Non-Linear Mech.
142
,
103984
(
2022
).
55.
J.
Meiyazhagan
,
S.
Sudharsan
,
A.
Venkatesan
, and
M.
Senthilvelan
, “
Prediction of occurrence of extreme events using machine learning
,”
Eur. Phys. J. Plus
137
,
16
(
2022
).
56.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
57.
J.
Pathak
and
E.
Ott
, “
Reservoir computing for forecasting large spatiotemporal dynamical systems
,”
Reservoir Comput.: Theory Phys. Implement. Appl.
(Springer,
2021
), pp. 117–138.
58.
G.
Barmparis
,
G.
Neofotistos
,
M.
Mattheakis
,
J.
Hizanidis
,
G.
Tsironis
, and
E.
Kaxiras
, “
Robust prediction of complex spatiotemporal states through machine learning with sparse sensing
,”
Phys. Lett. A
384
,
126300
(
2020
).
59.
N.
Kushwaha
,
N. K.
Mendola
,
S.
Ghosh
,
A. D.
Kachhvah
, and
S.
Jalan
, “
Machine learning assisted chimera and solitary states in networks
,”
Front. Phys.
9
,
513969
(
2021
).
60.
M.
Ganaie
,
S.
Ghosh
,
N.
Mendola
,
M.
Tanveer
, and
S.
Jalan
, “
Identification of chimera using machine learning
,”
Chaos
30
,
063128
(
2020
).
61.
R.
Xiao
,
L.-W.
Kong
,
Z.-K.
Sun
, and
Y.-C.
Lai
, “
Predicting amplitude death with machine learning
,”
Phys. Rev. E
104
,
014205
(
2021
).
62.
A.
Ray
,
T.
Chakraborty
, and
D.
Ghosh
, “
Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events
,”
Chaos
31
,
111105
(
2021
).
63.
V.
Pyragas
and
K.
Pyragas
, “
Using reservoir computer to predict and prevent extreme events
,”
Phys. Lett. A
384
,
126591
(
2020
).
64.
P.
Durairaj
,
G. K.
Sundararam
,
S.
Kanagaraj
, and
K.
Rajagopal
, “
Prediction of dragon king extreme events using machine learning approaches and its characterizations
,”
Phys. Lett. A
489
,
129158
(
2023
).
65.
J.
Jiang
,
Z.-G.
Huang
,
C.
Grebogi
, and
Y.-C.
Lai
, “
Predicting extreme events from data using deep machine learning: When and where
,”
Phys. Rev. Res.
4
,
023028
(
2022
).
66.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Unstable periodic orbits and the dimension of chaotic attractors
,”
Phys. Rev. A
36
,
3522
(
1987
).
67.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D
16
,
285
317
(
1985
).
68.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett
48
,
1507
(
1982
).
69.
P.
Chossat
and
M.
Golubitsky
, “
Symmetry-increasing bifurcation of chaotic attractors
,”
Phys. D
32
,
423
436
(
1988
).
70.
E.-H.
Park
,
M. A.
Zaks
, and
J.
Kurths
, “
Phase synchronization in the forced lorenz system
,”
Phys. Rev. E
60
,
6627
(
1999
).
71.
T.
Bhagyaraj
,
S.
Sabarathinam
,
A. I.
Ahamed
, and
K.
Thamilmaran
, “
Super-extreme events in a forced bonhoeffer–van der pol oscillator
,”
Pramana
97
,
170
(
2023
).
72.
J. F.
Eichner
,
J. W.
Kantelhardt
,
A.
Bunde
, and
S.
Havlin
, “
Statistics of return intervals in long-term correlated records
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
75
,
011128
(
2007
).
73.
M.
Santhanam
and
H.
Kantz
, “
Return interval distribution of extreme events and long-term memory
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
78
,
051113
(
2008
).
74.
R.
Blender
,
K.
Fraedrich
, and
F.
Sienz
, “
Extreme event return times in long-term memory processes near 1/f
,”
Nonlinear Process. Geophys.
15
,
557
565
(
2008
).
75.
M.
Santhanam
and
H.
Kantz
, “
Long-range correlations and rare events in boundary layer wind fields
,”
Phys. A
345
,
713
721
(
2005
).
76.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
You do not currently have access to this content.