In this study, given the inherent nature of dissipation in realistic dynamical systems, we explore the effects of dissipation within the context of fractional dynamics. Specifically, we consider the dissipative versions of two well known fractional maps: the Riemann–Liouville (RL) and the Caputo (C) fractional standard maps (fSMs). Both fSMs are two-dimensional nonlinear maps with memory given in action-angle variables ( I n , θ n ), with n being the discrete iteration time of the maps. In the dissipative versions, these fSMs are parameterized by the strength of nonlinearity K, the fractional order of the derivative α ( 1 , 2 ], and the dissipation strength γ ( 0 , 1 ]. In this work, we focus on the average action I n and the average squared action I n 2 when K 1, i.e., along strongly chaotic orbits. We first demonstrate, for | I 0 | > K, that dissipation produces the exponential decay of the average action I n I 0 exp ( γ n ) in both dissipative fSMs. Then, we show that while I n 2 RL fSM barely depends on α (effects are visible only when α 1), any α < 2 strongly influences the behavior of I n 2 C fSM. We also derive an analytical expression able to describe I n 2 RL fSM ( K , α , γ ).

1.
B. V.
Chirikov
, “Research concerning the theory of nonlinear resonance and stochasticity,” preprint 267, Institute of Nuclear Physics, Novosibirsk (1969). Engl. Trans., CERN Trans. (1971), pp. 71–40.
2.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
(
Springer-Verlag
,
New York
,
1992
).
3.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2008
).
4.
V. E.
Tarasov
and
G. M.
Zaslavsky
, “
Fractional equations of kicked systems and discrete maps
,”
J. Phys. A
41
,
435101
(
2008
).
5.
M.
Edelman
and
V. E.
Tarasov
, “
Fractional standard map
,”
Phys. Lett. A
374
,
279
285
(
2009
).
6.
M.
Edelman
, “
Fractional standard map: Riemann-Liouville vs. Caputo
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
4573
4580
(
2011
).
7.
V. E.
Tarasov
, “
Fractional dynamics with non-local scaling
,”
Commun. Nonlinear Sci. Numer. Simul.
102
,
105947
(
2021
).
8.
V. E.
Tarasov
, “
Nonlinear fractional dynamics with kicks
,”
Chaos Solitons Fractals
151
,
111259
(
2021
).
9.
V. E.
Tarasov
, “
From fractional differential equations with Hilfer derivatives to discrete maps with memory
,”
Comput. Appl. Math.
40
,
296
(
2021
).
10.
V. E.
Tarasov
, “
Integral equations of non-integer orders and discrete maps with memory
,”
Mathematics
9
,
1177
(
2021
).
11.
V. E.
Tarasov
, “
Discrete maps with distributed memory fading parameter
,”
Comput. Appl. Math.
43
,
113
(
2024
).
12.
M.
Razavy
,
Classical and Quantum Dissipative Systems
(
World Scientific
,
2006
).
13.
G. M.
Zaslavsky
, “
The simplest case of a strange attractor
,”
Phys. Lett. A
69
,
145
147
(
1978
).
14.
O. F.
Vlasova
and
G. M.
Zaslavsky
, “
Nonergonic regions in the standard dissipative mapping
,”
Phys. Lett. A
105
,
1
5
(
1984
).
15.
V. E.
Tarasov
and
M.
Edelman
, “
Fractional dissipative standard map
,”
Chaos
20
,
023127
(
2010
).
16.
V. E.
Tarasov
, “Fractional Zaslavsky and Henon discrete maps,” in Chapter 1 in Long-range Interaction, Stochasticity and Fractional Dynamics, edited by A. C. J. Luo and V. Afraimovich (Springer, 2010), pp. 1–26.
17.
R.
Aguilar-Sanchez
,
E. D.
Leonel
, and
J. A.
Mendez-Bermudez
, “
Dynamical properties of a dissipative discontinuous map: A scaling investigation
,”
Phys. Lett. A
377
,
3216
(
2013
).
18.
J. A.
Mendez-Bermudez
,
J. A.
deOliveira
, and
E. D.
Leonel
, “
Analytical description of critical dynamics for two–dimensional dissipative nonlinear maps
,”
Phys. Lett. A
380
,
1959
(
2016
).
19.
J. A.
Mendez-Bermudez
,
R.
Aguilar-Sanchez
,
J. M.
Sigarreta
, and
E. D.
Leonel
, “
Scaling properties of the action in the Riemann-Liouville fractional standard map
,”
Phys. Rev. E
109
,
034214
(
2024
).
You do not currently have access to this content.