We study three-dimensional diffusive transport of particles through a double-cone channel under stochastic resetting by means of the modified Fick–Jacobs equation. Exact analytical expressions for the unconditional first-passage density and the mean first-passage times in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. Our results show a difference in the mean first-passage times between a narrow–wide–narrow and wide–narrow–wide double-cone geometry. We find in the narrow–wide–narrow double-cone channel with absorbing boundaries a discontinuous transition for the optimal resetting rates, which is not present for the wide–narrow–wide double-cone channel. Furthermore, it is shown how resetting can expedite or slow down the escape of the particle through the double-cone channel. Our results extend the solutions obtained by Jain et al. [J. Chem. Phys. 158, 054113 (2023)].

1.
A.
Fick
, “
Ueber diffusion
,”
Ann. Phys.
170
,
59
86
(
1855
).
2.
I. M.
Sokolov
and
J.
Klafter
, “
From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion
,”
Chaos
15
,
026103
(
2005
).
3.
J. M.
Rubi
, “
Entropic diffusion in confined soft-matter and biological systems
,”
Europhys. Lett.
127
,
10001
(
2019
).
4.
O.
Bénichou
,
M.
Coppey
,
M.
Moreau
,
P.
Suet
, and
R.
Voituriez
, “
Optimal search strategies for hidden targets
,”
Phys. Rev. Lett.
94
,
198101
(
2005
).
5.
L. K.
Gallos
,
C.
Song
,
S.
Havlin
, and
H. A.
Makse
, “
Scaling theory of transport in complex biological networks
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
7746
7751
(
2007
).
6.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
7.
M.
Coppey
,
O.
Bénichou
,
R.
Voituriez
, and
M.
Moreau
, “
Kinetics of target site localization of a protein on DNA: A stochastic approach
,”
Biophys. J.
87
,
1640
1649
(
2004
).
8.
Y.
Liu
,
J.
Chen
, and
W.
Sun
, “
Exact determination of MFPT for random walks on rounded fractal networks with varying topologies
,”
J. Complex Netw.
12
,
cnae020
(
2024
).
9.
O.
Tal-Friedman
,
A.
Pal
,
A.
Sekhon
,
S.
Reuveni
, and
Y.
Roichman
, “
Experimental realization of diffusion with stochastic resetting
,”
J. Phys. Chem. Lett.
11
,
7350
7355
(
2020
).
10.
S.
Jain
,
D.
Boyer
,
A.
Pal
, and
L.
Dagdug
, “
Fick–Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting
,”
J. Chem. Phys.
158
,
054113
(
2023
).
11.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge University Press
,
2001
).
12.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
, “
Entropic particle transport: Higher-order corrections to the Fick-Jacobs diffusion equation
,”
Phys. Rev. E
83
,
051135
(
2011
).
13.
D.
Reguera
and
J.
Rubi
, “
Kinetic equations for diffusion in the presence of entropic barriers
,”
Phys. Rev. E
64
,
061106
(
2001
).
14.
R.
Verdel
,
L.
Dagdug
,
A. M.
Berezhkovskii
, and
S. M.
Bezrukov
, “
Unbiased diffusion in two-dimensional channels with corrugated walls
,”
J. Chem. Phys.
144
,
084106
(
2016
).
15.
M.
Sandoval
and
L.
Dagdug
, “
Effective diffusion of confined active Brownian swimmers
,”
Phys. Rev. E
90
,
062711
(
2014
).
16.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with stochastic resetting
,”
Phys. Rev. Lett.
106
,
160601
(
2011
).
17.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
, “
Stochastic resetting and applications
,”
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
18.
A.
Pérez-Espinosa
,
M.
Aguilar-Cornejo
, and
L.
Dagdug
, “
First-passage, transition path, and looping times in conical varying-width channels: Comparison of analytical and numerical results
,”
AIP Adv.
10
,
055201
(
2020
).
19.
A.
Pal
and
S.
Reuveni
, “
First passage under restart
,”
Phys. Rev. Lett.
118
,
030603
(
2017
).
20.
A.
Pal
and
V.
Prasad
, “
Landau-like expansion for phase transitions in stochastic resetting
,”
Phys. Rev. Res.
1
,
032001
(
2019
).
21.
A.
Pal
,
V.
Stojkoski
, and
T.
Sandev
, “Random resetting in search problems,” arXiv:2310.12057 (2023).
22.
A.
Kundu
and
S.
Reuveni
, “
Stochastic resetting: Theory and applications
,”
J. Phys. A: Math. Theor.
57
,
060301
(
2022
).
23.
R.
Zwanzig
, “
Diffusion past an entropy barrier
,”
J. Phys. Chem.
96
,
3926
3930
(
1992
).
24.
S.
Eule
and
J. J.
Metzger
, “
Non-equilibrium steady states of stochastic processes with intermittent resetting
,”
New J. Phys.
18
,
033006
(
2016
).
25.
É.
Roldán
,
A.
Lisica
,
D.
Sánchez-Taltavull
, and
S. W.
Grill
, “
Stochastic resetting in backtrack recovery by RNA polymerases
,”
Phys. Rev. E
93
,
062411
(
2016
).
26.
R.
Roy
,
A.
Biswas
, and
A.
Pal
, “
Queues with resetting: A perspective
,”
J. Phys.: Complex.
5
,
021001
(
2024
).
27.
I.
Nikitin
and
S.
Belan
, “
Constructing efficient strategies for the process optimization by restart
,”
Phys. Rev. E
109
,
054117
(
2024
).
28.
M.
Guéneau
,
S. N.
Majumdar
, and
G.
Schehr
, “
Optimal mean first-passage time of a run-and-tumble particle in a class of one-dimensional confining potentials
,”
Europhys. Lett.
145
,
61002
(
2024
).
29.
S.
Pal
,
D.
Boyer
,
L.
Dagdug
, and
A.
Pal
, “
Channel-facilitated transport under resetting dynamics
,”
J. Chem. Phys.
161
,
144114
(
2024
).
30.
S.
Gupta
and
A. M.
Jayannavar
, “
Stochastic resetting: A (very) brief review
,”
Front. Phys.
10
,
789097
(
2022
).
31.
A.
Molini
,
P.
Talkner
,
G. G.
Katul
, and
A.
Porporato
, “
First passage time statistics of Brownian motion with purely time dependent drift and diffusion
,”
Physica A
390
,
1841
1852
(
2011
).
32.
S. B.
Yuste
and
K.
Lindenberg
, “
Order statistics for first passage times in one-dimensional diffusion processes
,”
J. Stat. Phys.
85
,
501
512
(
1996
).
33.
P.
Kalinay
, “
Calculation of the mean first passage time tested on simple two-dimensional models
,”
J. Chem. Phys.
126
,
194708
(
2007
).
34.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
, “
First passage, looping, and direct transition in expanding and narrowing tubes: Effects of the entropy potential
,”
J. Chem. Phys.
147
,
134104
(
2017
).
35.
I.
Pompa-García
,
R.
Castilla
,
R.
Metzler
, and
L.
Dagdug
, “
First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results
,”
Phys. Rev. E
106
,
064137
(
2022
).
36.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
, “
Range of applicability of modified Fick-Jacobs equation in two dimensions
,”
J. Chem. Phys.
143
,
164102
(
2015
).
37.
I.
Pompa-García
and
L.
Dagdug
, “
Two-dimensional diffusion biased by a transverse gravitational force in an asymmetric channel: Reduction to an effective one-dimensional description
,”
Phys. Rev. E
104
,
044118
(
2021
).
38.
P.
Kalinay
and
J. K.
Percus
, “
Mapping of diffusion in a channel with abrupt change of diameter
,”
Phys. Rev. E
82
,
031143
(
2010
).
39.
P.
Kalinay
, “
Effective one-dimensional description of confined diffusion biased by a transverse gravitational force
,”
Phys. Rev. E
84
,
011118
(
2011
).
40.
M. H.
Jacobs
and
M.
Jacobs
,
Diffusion Processes
(
Springer
,
1935
).
41.
P.
Kalinay
and
J.
Percus
, “
Corrections to the Fick-Jacobs equation
,”
Phys. Rev. E
74
,
041203
(
2006
).
42.
M.
Moshinsky
,
E.
Sadurní
,
A.
Del Campo
et al., “
Alternative method for determining the Feynman propagator of a non-relativistic quantum mechanical problem
,”
SIGMA
3
,
110
(
2007
).
43.
W. J.
Herrera
,
H.
Vinck-Posada
, and
S.
Gómez Páez
, “
Green’s functions in quantum mechanics courses
,”
Am. J. Phys.
90
,
763
769
(
2022
).
44.
A. M.
Berezhkovskii
,
M. A.
Pustovoit
, and
S. M.
Bezrukov
, “
Entropic effects in channel-facilitated transport: Interparticle interactions break the flux symmetry
,”
Phys. Rev. E
80
,
020904
(
2009
).
45.
Y.
Chávez
,
G.
Chacón-Acosta
,
M.-V.
Vázquez
, and
L.
Dagdug
, “
Unbiased diffusion to escape complex geometries: Is reduction to effective one-dimensional description adequate to assess narrow escape times?
Appl. Math.
2014
,
1218
.
46.
A.
Pal
and
V.
Prasad
, “
First passage under stochastic resetting in an interval
,”
Phys. Rev. E
99
,
032123
(
2019
).
47.
A.
Pal
, “
Diffusion in a potential landscape with stochastic resetting
,”
Phys. Rev. E
91
,
012113
(
2015
).
48.
S.
Ahmad
,
K.
Rijal
, and
D.
Das
, “
First passage in the presence of stochastic resetting and a potential barrier
,”
Phys. Rev. E
105
,
044134
(
2022
).
You do not currently have access to this content.