In this paper, we propose a novel fourth-order memristive chaotic system (MCS), in which both its dynamical behaviors and the preassigned-time stabilization problem are analyzed. First, the dynamical behaviors of the proposed MCS are studied in detail, such as the infinite unstable equilibrium points, the chaotic attractor, the Lyapunov exponents, the Kaplan–Yorke dimension, and the bifurcation. Then, the T–S fuzzy method is employed to characterize the MCS, and a simpler model is built to deal with the nonlinearity caused by the memristor in the MCS. In addition, two intermittent controllers are proposed to guarantee the preassigned-time stability and the settling time, which can be set freely, independent of system parameters and initial state. Finally, numerical simulations provide solid confirmation for the validity of these theoretical results.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
2.
C.
Bonatto
,
J. A. C.
Gallas
, and
Y.
Ueda
, “
Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator
,”
Phys. Rev. E
77
(
2
),
026217
(
2008
).
3.
C.
Bonatto
and
J. A. C.
Gallas
, “
Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit
,”
Phys. Rev. Lett.
101
(
5
),
054101
(
2008
).
4.
C.
Rupa
,
M.
Harshitha
,
G.
Srivastava
,
T. R.
Gadekallu
, and
P. K. R.
Maddikunta
, “
Securing multimedia using a deep learning based chaotic logistic map
,”
IEEE J. Biomed. Health Inf.
27
(
3
),
1154
1162
(
2023
).
5.
R.
Gallas
,
R.
Gallas
, and
J. A. C.
Gallas
, “
Distribution of chaos and periodic spikes in a three-cell population model of cancer
,”
Eur. Phys. J.: Spec. Top.
223
(
11
),
2131
2144
(
2014
).
6.
W.
Jing
,
M.
Zhen
,
H.
Guan
,
W.
Luo
, and
X.
Liu
, “
A prediction model for building energy consumption in a shopping mall based on chaos theory
,”
Energy Rep.
8
,
5303
5312
(
2023
).
7.
Sukono
,
A.
Sambas
,
S.
He
,
H.
Liu
,
S.
Vaidyanathan
,
Y.
Hidayat
, and
J.
Saputra
, “
Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system
,”
Adv. Contin. Discrete Models
2020
,
674
(
2020
).
8.
L.
Wang
,
Y.
Zhou
,
X.
Da
, and
Q.
Lai
, “
Fixed-/Preassigned-time stability control of chaotic power systems
,”
Inter. J. Bifurcat. Chaos
33
(
9
),
2350110
(
2023
).
9.
R.
Tchitnga
,
T.
Nguazon
,
P. H.
Louodop Fotso
, and
J. A. C.
Gallas
, “
Chaos in a single op-amp-based jerk circuit: Experiments and simulations
,”
IEEE Trans. Circuits Syst. II: Express Briefs
63
(
3
),
239
243
(
2016
).
10.
F.
Yuan
,
S.
Li
,
Y.
Deng
,
Y.
Li
, and
G.
Chen
, “
Cu-doped T i O 2 x nanoscale memristive applications in chaotic circuit and true random number generator
,”
IEEE Trans. Ind. Electron.
70
(
4
),
4120
4127
(
2023
).
11.
Q.
Lai
,
Z.
Wan
,
L. K.
Kengne
,
P. D. K.
Kuate
, and
C.
Chen
, “
Two-memristor-based chaotic system with infinite coexisting attractors
,”
IEEE Trans. Circuits Syst. II: Express Briefs
68
(
6
),
2197
2201
(
2021
).
12.
J.
Wu
,
C.
Li
,
X.
Ma
,
T.
Lei
, and
G.
Chen
, “
Simplification of chaotic circuits with quadratic nonlinearity
,”
IEEE Trans. Circuits Syst. II: Express Briefs
69
(
3
),
1837
1841
(
2022
).
13.
L.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
14.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
15.
L.
Wang
,
H.
He
, and
Z.
Zeng
, “
Global synchronization of fuzzy memristive neural networks with discrete and distributed delays
,”
IEEE Trans. Fuzzy Syst.
28
(
9
),
2022
2034
(
2020
).
16.
G.
Cao
,
C.
Gao
,
J.
Wang
,
J.
Lan
, and
X.
Yan
, “
Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing
,”
Nano Res.
15
,
8419
8427
(
2022
).
17.
M.
Ma
,
Y.
Yang
,
Z.
Qiu
,
Y.
Peng
,
Y.
Sun
,
Z.
Li
, and
M.
Wang
, “
A locally active discrete memristor model and its application in a hyperchaotic map
,”
Nonlinear Dyn.
107
,
2935
2949
(
2022
).
18.
H.
Kim
,
M. P.
Sah
,
C.
Yang
,
S.
Cho
, and
L. O.
Chua
, “
Memristor emulator for memristor circuit applications
,”
IEEE Trans. Circuits Syst. I: Regular Papers
59
(
10
),
2422
2431
(
2012
).
19.
M.
Messadi
,
K.
Kemih
,
L.
Moysis
, and
C.
Volos
, “
A new 4D memristor chaotic system: Analysis and implementation
,”
Integration
88
,
91
100
(
2023
).
20.
H.
Bao
,
H.
Li
,
Z.
Hua
,
Q.
Xu
, and
B.
Bao
, “
Sine-transform-based memristive hyperchaotic model with hardware implementation
,”
IEEE Trans. Indus. Inf.
19
(
3
),
2792
2801
(
2023
).
21.
N.
Semenova
and
D.
Brunner
, “
Impact of white noise in artificial neural networks trained for classification: Performance and noise mitigation strategies
,”
Chaos
34
(
5
),
051101
(
2024
).
22.
T.
Takagi
and
M.
Sugeno
, “
Fuzzy identification of systems and its applications to modeling and control
,”
IEEE Trans. Syst., Man, Cybern.
SMC-15
(
1
),
116
132
(
1985
).
23.
H.
Xia
,
J.
Tang
,
W.
Yu
,
C.
Cui
, and
J.
Qiao
, “
Takagi-Sugeno fuzzy regression trees with application to complex industrial modeling
,”
IEEE Trans. Fuzzy Syst.
31
(
7
),
2210
2224
(
2023
).
24.
S. H.
Tsai
and
Y. W.
Chen
, “
A novel interval type-2 fuzzy system identification method based on the modified fuzzy C-regression model
,”
IEEE Trans. Cybern.
52
(
9
),
9834
9845
(
2022
).
25.
C.
Liang
,
M.
Ge
,
Z. W.
Liu
,
X.
Zhan
, and
J. H.
Park
, “
Predefined-time stabilization of T-S fuzzy systems: A novel integral sliding mode-based approach
,”
IEEE Trans. Fuzzy Syst.
30
(
10
),
4423
4433
(
2022
).
26.
Q.
Chang
,
J. H.
Park
,
Y.
Yang
, and
F.
Wang
, “
Finite-time multiparty synchronization of T-S fuzzy coupled memristive neural networks with optimal event-triggered control
,”
IEEE Trans. Fuzzy Syst.
31
(
8
),
2545
2555
(
2023
).
27.
R.
Wang
,
C.
Li
,
S.
Kong
,
Y.
Jiang
, and
T.
Lei
, “
A 3D memristive chaotic system with conditional symmetry
,”
Chaos Soliton. Fract.
158
,
112040
(
2022
).
28.
Y.
Peng
,
S.
He
, and
K.
Sun
, “
Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm
,”
Nonlinear Dyn.
107
,
1263
1275
(
2022
).
29.
H.
Dong
,
J.
Cao
, and
H.
Liu
, “
Observers-based event-triggered adaptive fuzzy backstepping synchronization of uncertain fractional order chaotic systems
,”
Chaos
33
(
4
),
043113
(
2023
).
30.
S.
Yan
,
J.
Song
,
Y.
Cui
,
L.
Li
, and
J.
Wang
, “
A memristive chaotic system and its application in weak signal detection
,”
Phys. Scr.
98
,
105216
(
2023
).
31.
X.
Zhang
,
C.
Li
, and
H.
Li
, “
Finite-time stabilization of nonlinear systems via impulsive control with state-dependent delay
,”
J. Franklin Inst.
359
(
3
),
1196
1214
(
2022
).
32.
L.
Wang
,
S.
Jiang
,
M.
Ge
,
C.
Hu
, and
J.
Hu
, “
Finite-/Fixed-time synchronization of memristor chaotic systems and image encryption application
,”
IEEE Trans. Circuits Syst. I: Regular Papers
68
(
12
),
4957
4969
(
2021
).
33.
H.
Tian
,
Z.
Wang
,
H.
Zhang
,
Z.
Cao
, and
P.
Zhang
, “
Dynamical analysis and fixed-time synchronization of a chaotic system with hidden attractor and a line equilibrium
,”
Eur. Phys. J.: Spec. Top.
231
,
2455
2466
(
2022
).
34.
Y.
Wang
,
J.
Lu
,
T.
Huang
,
J.
Cao
, and
J.
Zhong
, “
Fixed-time synchronization for two-dimensional coupled reaction-diffusion complex networks: Boundary conditions analysis
,”
Chaos
34
(
4
),
043116
(
2024
).
35.
X.
Hu
,
L.
Wang
,
C.
Zhang
,
X.
Wan
, and
Y.
He
, “
Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control
,”
Sci. China Inform. Sci.
66
(
5
),
152204
(
2023
).
36.
H.
Li
,
C.
Hu
,
G.
Zhang
,
J.
Hu
, and
L.
Wang
, “
Fixed-/Preassigned-time stabilization of delayed memristive neural networks
,”
Inf. Sci.
610
,
624
636
(
2022
).
37.
Y.
Pan
,
W.
Ji
, and
H.
Liang
, “
Adaptive predefined-time control for Lü chaotic systems via backstepping approach
,”
IEEE Trans. Circuits Syst. II: Express Briefs
69
(
12
),
5064
5068
(
2022
).
38.
Z.
Cai
,
L.
Huang
, and
Z.
Wang
, “
Fixed/Preassigned-time stability of time-varying nonlinear system with discontinuity: Application to Chua’s circuit
,”
IEEE Trans. Circuits Syst. II: Express Briefs
69
(
6
),
2987
2991
(
2022
).
39.
Q.
Gan
,
L.
Li
,
J.
Yang
,
Y.
Qin
, and
M.
Meng
, “
Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks
,”
IEEE Trans. Neural Networks Learn. Syst.
33
(
10
),
5542
5556
(
2022
).
40.
M.
Itho
and
L. O.
Chua
, “
Memristor oscillators
,”
Inter. J. Bifurcat. Chaos
18
(
11
),
3183-3296
(
2008
).
41.
W.
Wan
,
R.
Kubendran
,
C.
Schaefer
et al., “
A compute-in-memory chip based on resistive random-access memory
,”
Nature
608
,
504
512
(
2022
).
42.
C.
Hu
,
H.
He
, and
H.
Jiang
, “
Fixed/Preassigned-time synchronization of complex networks via improving fixed-time stability
,”
IEEE Trans. Cybern.
51
(
6
),
2882
2892
(
2021
).
43.
A. K.
Pal
,
S.
Kamal
,
S. K.
Nagar
,
B.
Bandyopadhyay
, and
L.
Fridman
, “
Design of controllers with arbitrary convergence time
,”
Automatica
112
,
108710
(
2020
).
44.
Z.
Chen
,
X.
Ju
,
Z.
Wang
, and
Q.
Li
, “
The prescribed time sliding mode control for attitude tracking of spacecraft
,”
Asian J. Control
24
(
4
),
1650
1662
(
2022
).
45.
Y. C.
Lai
and
T.
Tél
,
Transient Chaos: Complex Dynamics on Finite Time Scales
(
Springer Science & Business Media
,
2011
).
46.
C. K.
Volos
,
V. T.
Pham
,
H. E.
Nistazakis
, and
I. N.
Stouboulos
, “
A dream that has come true: Chaos from a nonlinear circuit with a real memristor
,”
Inter. J. Bifurcat. Chaos
30
(
13
),
2030036
(
2020
).
You do not currently have access to this content.