Shrimps are islands of regularity within chaotic regimes in bi-parameter spaces of nonlinear dynamical systems. While the presence of periodic shrimps has been extensively reported, recent research has uncovered the existence of quasi-periodic shrimps. Compared to their periodic counterparts, quasi-periodic shrimps require a relatively higher-dimensional phase-space to come into existence and are also quite uncommon to observe. This Focus Issue contribution delves into the existence and intricate dynamics of quasi-periodic shrimps within the parameter space of a discrete-time, three-species food chain model. Through high-resolution stability charts, we unveil the prevalence of quasi-periodic shrimps in the system’s unsteady regime. We extensively study the bifurcation characteristics along the two borders of the quasi-periodic shrimp. Our analysis reveals that along the outer border, the system exhibits transition to chaos via intermittency, whereas along the inner border, torus-doubling and torus-bubbling phenomena, accompanied by finite doubling and bubbling cascades, are observed. Another salient aspect of this work is the identification of quasi-periodic accumulation horizon and different quasi-periodic (torus) adding sequences for the self-distribution of infinite cascades of self-similar quasi-periodic shrimps along the horizon in certain parameter space of the system.

1.
J. A. C.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
2.
N. C.
Pati
, “
Spiral organization of quasi-periodic shrimp-shaped domains in a discrete predator-prey system
,”
Chaos
34
,
083126
(
2024
).
3.
G. C.
Layek
,
An Introduction to Dynamical Systems and Chaos
, 2nd ed. (
Springer
,
2024
).
4.
J. A. C.
Gallas
, “
Dissecting shrimps: Results for some one-dimensional physical models
,”
Physica A
202
,
196
223
(
1994
).
5.
R.
Vitolo
,
P.
Glendinning
, and
J. A. C.
Gallas
, “
Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows
,”
Phys. Rev. E
84
,
016216
(
2011
).
6.
R.
Stoop
,
S.
Martignoli
,
P.
Benner
,
R. L.
Stoop
, and
Y.
Uwate
, “
Shrimps: Occurrence, scaling and relevance
,”
Int. J. Bifurcat. Chaos
22
,
1230032
(
2012
).
7.
L.
Glass
and
R.
Perez
, “
Fine structure of phase locking
,”
Phys. Rev. Lett.
48
,
1772
(
1982
).
8.
S.
Fraser
and
R.
Kapral
, “
Analysis of flow hysteresis by a one-dimensional map
,”
Phys. Rev. A
25
,
3223
(
1982
).
9.
R.
Perez
and
L.
Glass
, “
Bistability, period doubling bifurcations and chaos in a periodically forced oscillator
,”
Phys. Lett. A
90
,
441
443
(
1982
).
10.
P.
Gaspard
,
R.
Kapral
, and
G.
Nicolis
, “
Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,”
J. Stat. Phys.
35
,
697
727
(
1984
).
11.
M.
Markus
and
B.
Hess
, “
Lyapunov exponents of the logistic map with periodic forcing
,”
Comput. Graphics
13
,
553
558
(
1989
).
12.
J. P.
Carcasses
,
C.
Mira
,
M.
Bosch
,
C.
Simó
, and
J. C.
Tatjer
, “
‘Crossroad area–spring area’ transition (i) parameter plane representation
,”
Int. J. Bifurcat. Chaos
1
,
183
196
(
1991
).
13.
E. N.
Lorenz
, “
Compound windows of the Hénon-map
,”
Physica D
237
,
1689
1704
(
2008
).
14.
R. E.
Francke
,
T.
Pöschel
, and
J. A. C.
Gallas
, “
Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser
,”
Phys. Rev. E
87
,
042907
(
2013
).
15.
A.
Sack
,
J. G.
Freire
,
E.
Lindberg
,
T.
Pöschel
, and
J. A. C.
Gallas
, “
Discontinuous spirals of stable periodic oscillations
,”
Sci. Rep.
3
,
3350
(
2013
).
16.
F.
Prebianca
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Describing intrinsic noise in Chua’s circuit
,”
Phys. Lett. A
382
,
2420
2423
(
2018
).
17.
X. B.
Rao
,
X. P.
Zhao
,
J. S.
Gao
, and
J. G.
Zhang
, “
Self-organizations with fast-slow time scale in a memristor-based Shinriki’s circuit
,”
Commun. Nonlinear Sci. Numer. Simul.
94
,
105569
(
2021
).
18.
C.
Bonatto
,
J. C.
Garreau
, and
J. A. C.
Gallas
, “
Self-similarities in the frequency-amplitude space of a loss-modulated CO 2 laser
,”
Phys. Rev. Lett.
95
,
143905
(
2005
).
19.
C. A. T.
Chávez
and
S.
Curilef
, “
Discontinuous spirals of stability in an optically injected semiconductor laser
,”
Chaos
30
,
053107
(
2020
).
20.
Y.
Zou
,
M.
Thiel
,
M. C.
Romano
,
J.
Kurths
, and
Q.
Bi
, “
Shrimp structure and associated dynamics in parametrically excited oscillators
,”
Int. J. Bifurcat. Chaos
16
,
3567
3579
(
2006
).
21.
M. A.
Nascimento
,
J. A. C.
Gallas
, and
H.
Varela
, “
Self-organized distribution of periodicity and chaos in an electrochemical oscillator
,”
Phys. Chem. Chem. Phys.
13
,
441
446
(
2011
).
22.
S. L. T.
De Souza
,
A. M.
Batista
,
M. S.
Baptista
,
I. L.
Caldas
, and
J. M.
Balthazar
, “
Characterization in bi-parameter space of a non-ideal oscillator
,”
Physica A
466
,
224
231
(
2017
).
23.
L.
Xu
,
Y.-D.
Chu
, and
Q.
Yang
, “
Novel dynamical scenario of the two-stage Colpitts oscillator
,”
Chaos Soliton. Fract.
138
,
109998
(
2020
).
24.
A.
Celestino
,
C.
Manchein
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Ratchet transport and periodic structures in parameter space
,”
Phys. Rev. Lett.
106
,
234101
(
2011
).
25.
R. A.
da Silva
and
P. C.
Rech
, “
Spiral periodic structures in a parameter plane of an ecological model
,”
Appl. Math. Comput.
254
,
9
13
(
2015
).
26.
N. C.
Pati
,
G. C.
Layek
, and
N.
Pal
, “
Bifurcations and organized structures in a predator-prey model with hunting cooperation
,”
Chaos Soliton. Fract.
140
,
110184
(
2020
).
27.
M.
Hossain
,
N. C.
Pati
,
S.
Pal
,
S.
Rana
,
N.
Pal
, and
G. C.
Layek
, “
Bifurcations and multistability in a food chain model with nanoparticles
,”
Math. Comput. Simul.
190
,
808
825
(
2021
).
28.
B.-K.
Hou
,
J.-S.
Gao
,
X.-B.
Rao
, and
S.-L.
Ding
, “
Novel organizational patterns of stability phases in a single-species population model: Chiral tree, spikes adding-doubling complexification cascade
,”
Nonlinear Dyn.
112
,
17611
17626
(
2024
).
29.
J. C.
Xavier
and
P. C.
Rech
, “
Regular and chaotic dynamics of the Lorenz–Stenflo system
,”
Int. J. Bifurcat. Chaos
20
,
145
152
(
2010
).
30.
M. N.
Mahmud
,
Z.
Siri
,
J. A.
Vélez
,
L. M.
Pérez
, and
D.
Laroze
, “
Chaotic convection in an Oldroyd viscoelastic fluid in saturated porous medium with feedback control
,”
Chaos
30
,
073109
(
2020
).
31.
M. R.
Gallas
,
M. R.
Gallas
, and
J. A. C.
Gallas
, “
Distribution of chaos and periodic spikes in a three-cell population model of cancer
,”
Eur. Phys. J. Spec. Top.
223
,
2131
2144
(
2014
).
32.
S. L. T.
de Souza
,
A. A.
Lima
,
I. L.
Caldas
,
R. O.
Medrano-T
, and
Z. O.
Guimarães-Filho
, “
Self-similarities of periodic structures for a discrete model of a two-gene system
,”
Phys. Lett. A
376
,
1290
1294
(
2012
).
33.
C. S.
Rodrigues
,
C. G. P.
Dos Santos
,
R. C. C.
de Miranda
,
E.
Parma
,
H.
Varela
, and
R.
Nagao
, “
A numerical investigation of the effect of external resistance and applied potential on the distribution of periodicity and chaos in the anodic dissolution of nickel
,”
Phys. Chem. Chem. Phys.
22
,
21823
21834
(
2020
).
34.
A. C.
Mathias
and
P. C.
Rech
, “
Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
,”
Neural Networks
34
,
42
45
(
2012
).
35.
P. C.
Rech
, “
Period-adding and spiral organization of the periodicity in a Hopfield neural network
,”
Int. J. Mach. Learn. Cybern.
6
,
1
6
(
2015
).
36.
B.
Raphaldini
,
E. S.
Medeiros
,
D.
Ciro
,
D. R.
Franco
, and
R. I. F.
Trindade
, “
Geomagnetic reversals at the edge of regularity
,”
Phys. Rev. Res.
3
,
013158
(
2021
).
37.
R.
Varga
,
K.
Klapcsik
, and
F.
Hegedűs
, “
Route to shrimps: Dissipation driven formation of shrimp-shaped domains
,”
Chaos Soliton. Fract.
130
,
109424
(
2020
).
38.
J.
Slipantschuk
,
E.
Ullner
,
M. S.
Baptista
,
M.
Zeineddine
, and
M.
Thiel
, “
Abundance of stable periodic behavior in a Red Grouse population model with delay: A consequence of homoclinicity
,”
Chaos
20
,
045117
(
2010
).
39.
L.
Junges
and
J. A. C.
Gallas
, “
Intricate routes to chaos in the Mackey–Glass delayed feedback system
,”
Phys. Lett. A
376
,
2109
2116
(
2012
).
40.
R. A.
Miranda
,
E. L.
Rempel
, and
A. C. L.
Chian
, “
Chaotic saddles in nonlinear modulational interactions in a plasma
,”
Phys. Plasmas
19
,
112303
(
2012
).
41.
A. A. C.
Recco
,
J. C.
Sagás
, and
P. C.
Rech
, “
Multistability, period-adding, and fractality in a plasma oscillator
,”
Phys. Plasmas
30
,
112301
(
2023
).
42.
V. E.
Camargo
,
A. S.
Amaral
,
A. F.
Crepaldi
, and
F. F.
Ferreira
, “
Synchronization and bifurcation in an economic model
,”
Chaos
32
,
103112
(
2022
).
43.
D. F. M.
Oliveira
,
M.
Robnik
, and
E. D.
Leonel
, “
Shrimp-shape domains in a dissipative kicked rotator
,”
Chaos
21
,
043122
(
2011
).
44.
R.
Stoop
,
P.
Benner
, and
Y.
Uwate
, “
Real-world existence and origins of the spiral organization of shrimp-shaped domains
,”
Phys. Rev. Lett.
105
,
074102
(
2010
).
45.
E. R.
Viana
,
R. M.
Rubinger
,
H. A.
Albuquerque
,
A. G.
de Oliveira
, and
G. M.
Ribeiro
, “
High-resolution parameter space of an experimental chaotic circuit
,”
Chaos
20
,
023110
(
2010
).
46.
F. F. G.
de Sousa
,
R. M.
Rubinger
,
J. C.
Sartorelli
,
H. A.
Albuquerque
, and
M. S.
Baptista
, “
Parameter space of experimental chaotic circuits with high-precision control parameters
,”
Chaos
26
,
083107
(
2016
).
47.
F.
Prebianca
,
D. W. C.
Marcondes
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Exploring an experimental analog Chua’s circuit
,”
Eur. Phys. J. B
92
,
1
8
(
2019
).
48.
O. V.
Popovych
,
V.
Krachkovskyi
, and
P. A.
Tass
, “
Phase-locking swallows in coupled oscillators with delayed feedback
,”
Phys. Rev. E
82
,
046203
(
2010
).
49.
P. C.
Rech
, “
Quasiperiodicity and chaos in a generalized Nosé–Hoover oscillator
,”
Int. J. Bifurcat. Chaos
26
,
1650170
(
2016
).
50.
N. V.
Stankevich
,
N. A.
Shchegoleva
,
I. R.
Sataev
, and
A. P.
Kuznetsov
, “
Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators
,”
J. Comput. Nonlinear Dyn.
15
,
111001
(
2020
).
51.
A. K.
Saulich
and
D. L.
Musolin
, “
Seasonal cycles in stink bugs (Heteroptera, Pentatomidae) from the temperate zone: Diversity and control
,”
Entomol. Rev.
94
,
785
814
(
2014
).
52.
L.
Alseda
,
B.
Vidiella
,
R.
Solé
,
J. T.
Lázaro
, and
J.
Sardanyés
, “
Dynamics in a time-discrete food-chain model with strong pressure on preys
,”
Commun. Nonlinear Sci. Numer. Simul.
84
,
105187
(
2020
).
53.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
54.
C.
Bonatto
and
J. A. C.
Gallas
, “
Accumulation horizons and period adding in optically injected semiconductor lasers
,”
Phys. Rev. E
75
,
055204
(
2007
).
55.
C.
Manchein
,
L.
Santana
,
R. M.
da Silva
, and
M. W.
Beims
, “
Noise-induced stabilization of the FitzHugh–Nagumo neuron dynamics: Multistability and transient chaos
,”
Chaos
32
,
083102
(
2022
).
You do not currently have access to this content.