Network synchronization of lasers is critical for achieving high-power outputs and enabling effective optical computing. However, the role of network topology in frequency synchronization of optical oscillators and lasers remains not well understood. Here, we report our significant progress toward solving this critical problem for networks of heterogeneous laser model oscillators with repulsive coupling. We discover a general approximate principle for predicting the onset of frequency synchronization from the spectral knowledge of a complex matrix representing a combination of the signless Laplacian induced by repulsive coupling and a matrix associated with intrinsic frequency detuning. We show that the gap between the two smallest eigenvalues of the complex matrix generally controls the coupling threshold for frequency synchronization. In stark contrast with attractive networks, we demonstrate that local rings and all-to-all networks prevent frequency synchronization, whereas full bipartite networks have optimal synchronization properties. Beyond laser models, we show that, with a few exceptions, the spectral principle can be applied to repulsive Kuramoto networks. Our results provide guidelines for optimal designs of scalable optical oscillator networks capable of achieving reliable frequency synchronization.

1
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
2
J. G.
Restrepo
,
E.
Ott
, and
B. R.
Hunt
, “
Onset of synchronization in large networks of coupled oscillators
,”
Phys. Rev. E
71
,
036151
(
2005
).
3
V. N.
Belykh
,
I. V.
Belykh
, and
M.
Hasler
, “
Connection graph stability method for synchronized coupled chaotic systems
,”
Phys. D: Nonlinear Phenom.
195
,
159
187
(
2004
).
4
M.
Nixon
,
E.
Ronen
,
A. A.
Friesem
, and
N.
Davidson
, “
Observing geometric frustration with thousands of coupled lasers
,”
Phys. Rev. Lett.
110
,
184102
(
2013
).
5
V.
Eckhouse
,
M.
Fridman
,
N.
Davidson
, and
A. A.
Friesem
, “
Loss enhanced phase locking in coupled oscillators
,”
Phys. Rev. Lett.
100
,
024102
(
2008
).
6
M.
Honari-Latifpour
and
M.-A.
Miri
, “
Mapping the XY Hamiltonian onto a network of coupled lasers
,”
Phys. Rev. Res.
2
,
043335
(
2020
).
7
M.
Parto
,
W.
Hayenga
,
A.
Marandi
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Realizing spin Hamiltonians in nanoscale active photonic lattices
,”
Nat. Mater.
19
,
725
731
(
2020
).
8
J. R.
Fienup
, “
Phase retrieval algorithms: A comparison
,”
Appl. Opt.
21
,
2758
2769
(
1982
).
9
J.
Leger
, “Diode laser arrays,” edited by D. Botez and D. Scifres (Cambridge University Press, 1994).
10
J.
Thévenin
,
M.
Romanelli
,
M.
Vallet
,
M.
Brunel
, and
T.
Erneux
, “
Resonance assisted synchronization of coupled oscillators: Frequency locking without phase locking
,”
Phys. Rev. Lett.
107
,
104101
(
2011
).
11
R.
Roy
and
K. S.
Thornburg
, Jr.
, “
Experimental synchronization of chaotic lasers
,”
Phys. Rev. Lett.
72
,
2009
(
1994
).
12
N.
Nair
,
K.
Hu
,
M.
Berrill
,
K.
Wiesenfeld
, and
Y.
Braiman
, “
Using disorder to overcome disorder: A mechanism for frequency and phase synchronization of diode laser arrays
,”
Phys. Rev. Lett.
127
,
173901
(
2021
).
13
Y.
Shen
,
N. C.
Harris
,
S.
Skirlo
,
M.
Prabhu
,
T.
Baehr-Jones
,
M.
Hochberg
,
X.
Sun
,
S.
Zhao
,
H.
Larochelle
,
D.
Englund
et al., “
Deep learning with coherent nanophotonic circuits
,”
Nat. Photonics
11
,
441
446
(
2017
).
14
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
, “
Cavity optomechanics
,”
Rev. Mod. Phys.
86
,
1391
1452
(
2014
).
15
A.
Pasquazi
,
M.
Peccianti
,
L.
Razzari
,
D. J.
Moss
,
S.
Coen
,
M.
Erkintalo
,
Y. K.
Chembo
,
T.
Hansson
,
S.
Wabnitz
,
P.
Del’Haye
et al., “
Micro-combs: A novel generation of optical sources
,”
Phys. Rep.
729
,
1
81
(
2018
).
16
S. A.
Diddams
,
K.
Vahala
, and
T.
Udem
, “
Optical frequency combs: Coherently uniting the electromagnetic spectrum
,”
Science
369
,
eaay3676
(
2020
).
17
N. G.
Berloff
,
M.
Silva
,
K.
Kalinin
,
A.
Askitopoulos
,
J. D.
Töpfer
,
P.
Cilibrizzi
,
W.
Langbein
, and
P. G.
Lagoudakis
, “
Realizing the classical XY Hamiltonian in polariton simulators
,”
Nat. Mater.
16
,
1120
1126
(
2017
).
18
M.
Nixon
,
M.
Fridman
,
E.
Ronen
,
A. A.
Friesem
,
N.
Davidson
, and
I.
Kanter
, “
Controlling synchronization in large laser networks
,”
Phys. Rev. Lett.
108
,
214101
(
2012
).
19
M.
Nixon
,
M.
Friedman
,
E.
Ronen
,
A. A.
Friesem
,
N.
Davidson
, and
I.
Kanter
, “
Synchronized cluster formation in coupled laser networks
,”
Phys. Rev. Lett.
106
,
223901
(
2011
).
20
D.
Brunner
and
I.
Fischer
, “
Reconfigurable semiconductor laser networks based on diffractive coupling
,”
Opt. Lett.
40
,
3854
3857
(
2015
).
21
J.
Ding
,
I.
Belykh
,
A.
Marandi
, and
M.-A.
Miri
, “
Dispersive versus dissipative coupling for frequency synchronization in lasers
,”
Phys. Rev. Appl.
12
,
054039
(
2019
).
22
T.
Wang
and
J.
Roychowdhury
, “Oim: Oscillator-based ising machines for solving combinatorial optimisation problems,” in Unconventional Computation and Natural Computation, edited by I. McQuillan and S. Seki (Springer International Publishing, Cham, 2019), pp. 232–256.
23
Z.
Wang
,
A.
Marandi
,
K.
Wen
,
R. L.
Byer
, and
Y.
Yamamoto
, “
Coherent ising machine based on degenerate optical parametric oscillators
,”
Phys. Rev. A
88
,
063853
(
2013
).
24
A.
Lucas
, “
Ising formulations of many NP problems
,”
Front. Phys.
2
,
5
(
2014
).
25
M.-A.
Miri
and
V.
Menon
, “
Neural computing with coherent laser networks
,”
Nanophotonics
12
,
883
892
(
2023
).
26
A.
Andrianov
,
N.
Kalinin
,
E.
Anashkina
, and
G.
Leuchs
, “
Highly efficient coherent beam combining of tiled aperture arrays using out-of-phase pattern
,”
Opt. Lett.
45
,
4774
4777
(
2020
).
27
Y.
Braiman
,
J. F.
Lindner
, and
W. L.
Ditto
, “
Taming spatiotemporal chaos with disorder
,”
Nature
378
,
465
467
(
1995
).
28
L.
Fabiny
,
P.
Colet
,
R.
Roy
, and
D.
Lenstra
, “
Coherence and phase dynamics of spatially coupled solid-state lasers
,”
Phys. Rev. A
47
,
4287
4296
(
1993
).
29
K. S.
Thornburg
,
M.
Möller
,
R.
Roy
,
T. W.
Carr
,
R.-D.
Li
, and
T.
Erneux
, “
Chaos and coherence in coupled lasers
,”
Phys. Rev. E
55
,
3865
3869
(
1997
).
30
G.
Kozyreff
,
A.
Vladimirov
, and
P.
Mandel
, “
Global coupling with time delay in an array of semiconductor lasers
,”
Phys. Rev. Lett.
85
,
3809
(
2000
).
31
J.
Zamora-Munt
,
C.
Masoller
,
J.
Garcia-Ojalvo
, and
R.
Roy
, “
Crowd synchrony and quorum sensing in delay-coupled lasers
,”
Phys. Rev. Lett.
105
,
264101
(
2010
).
32
S.
Mahler
,
A. A.
Friesem
, and
N.
Davidson
, “
Experimental demonstration of crowd synchrony and first-order transition with lasers
,”
Phys. Rev. Res.
2
,
043220
(
2020
).
33
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D.
Valladares
, and
C.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
34
J.
Sun
,
E. M.
Bollt
, and
T.
Nishikawa
, “
Master stability functions for coupled nearly identical dynamical systems
,”
Europhys. Lett.
85
,
60011
(
2009
).
35
T.
Nishikawa
and
A. E.
Motter
, “
Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
10342
10347
(
2010
).
36
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
37
F.
Sorrentino
and
M.
Porfiri
, “
Analysis of parameter mismatches in the master stability function for network synchronization
,”
Europhys. Lett.
93
,
50002
(
2011
).
38
G. B.
Ermentrout
, “
Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators
,”
SIAM J. Appl. Math.
52
,
1665
1687
(
1992
).
39
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer Science & Business Media
,
2012
), Vol. 126.
40
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
2007
).
41
I.
Belykh
,
E.
de Lange
, and
M.
Hasler
, “
Synchronization of bursting neurons: What matters in the network topology
,”
Phys. Rev. Lett.
94
,
188101
(
2005
).
42
I.
Belykh
,
R.
Reimbayev
, and
K.
Zhao
, “
Synergistic effect of repulsive inhibition in synchronization of excitatory networks
,”
Phys. Rev. E
91
,
062919
(
2015
).
43
P. C.
Matthews
and
S. H.
Strogatz
, “
Phase diagram for the collective behavior of limit-cycle oscillators
,”
Phys. Rev. Lett.
65
,
1701
(
1990
).
44
P. C.
Matthews
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Dynamics of a large system of coupled nonlinear oscillators
,”
Phys. D: Nonlinear Phenom.
52
,
293
331
(
1991
).
45
W.
Shing Lee
,
E.
Ott
, and
T. M.
Antonsen
, “
Phase and amplitude dynamics in large systems of coupled oscillators: Growth heterogeneity, nonlinear frequency shifts, and cluster states
,”
Chaos
23
,
033116
(
2013
).
46
H.
Nakao
and
A. S.
Mikhailov
, “
Diffusion-induced instability and chaos in random oscillator networks
,”
Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys.
79
,
036214
(
2009
).
47
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
48
R. E.
Mirollo
and
S. H.
Strogatz
, “
The spectrum of the locked state for the Kuramoto model of coupled oscillators
,”
Phys. D: Nonlinear Phenom.
205
,
249
266
(
2005
).
49
A.
Arenas
,
A.
Diaz-Guilera
, and
C. J.
Pérez-Vicente
, “
Synchronization reveals topological scales in complex networks
,”
Phys. Rev. Lett.
96
,
114102
(
2006
).
50
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
1564
(
2014
).
51
G. S.
Medvedev
and
X.
Tang
, “
Stability of twisted states in the Kuramoto model on Cayley and random graphs
,”
J. Nonlinear Sci.
25
,
1169
1208
(
2015
).
52
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
53
T.
Nishikawa
and
A. E.
Motter
, “
Symmetric states requiring system asymmetry
,”
Phys. Rev. Lett.
117
,
114101
(
2016
).
54
Y.
Zhang
,
J. L.
Ocampo-Espindola
,
I. Z.
Kiss
, and
A. E.
Motter
, “
Random heterogeneity outperforms design in network synchronization
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2024299118
(
2021
).
55
P. S.
Skardal
,
D.
Taylor
, and
J.
Sun
, “
Optimal synchronization of complex networks
,”
Phys. Rev. Lett.
113
,
144101
(
2014
).
56
Y.
Zhang
and
A. E.
Motter
, “
Identical synchronization of nonidentical oscillators: When only birds of different feathers flock together
,”
Nonlinearity
31
,
R1
(
2017
).
57
A.
Nazerian
,
S.
Panahi
, and
F.
Sorrentino
, “
Synchronization in networks of coupled oscillators with mismatches
,”
Europhys. Lett.
143
,
11001
(
2023
).
58
R.
Berner
,
S.
Yanchuk
,
Y.
Maistrenko
, and
E.
Schöll
, “
Generalized splay states in phase oscillator networks
,”
Chaos
31
,
073128
(
2021
).
59
R.
Ronge
and
M. A.
Zaks
, “
Splay states and two-cluster states in ensembles of excitable units
,”
Eur. Phys. J. Spec. Top.
230
,
2717
2724
(
2021
).
60
V. O.
Munyayev
,
M. I.
Bolotov
,
L. A.
Smirnov
,
G. V.
Osipov
, and
I.
Belykh
, “
Cyclops states in repulsive Kuramoto networks: The role of higher-order coupling
,”
Phys. Rev. Lett.
130
,
107201
(
2023
).
61
L.
Tsimring
,
N.
Rulkov
,
M.
Larsen
, and
M.
Gabbay
, “
Repulsive synchronization in an array of phase oscillators
,”
Phys. Rev. Lett.
95
,
014101
(
2005
).
62
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
63
F.
Arecchi
,
G.
Lippi
,
G.
Puccioni
, and
J.
Tredicce
, “
Deterministic chaos in laser with injected signal
,”
Opt. Commun.
51
,
308
314
(
1984
).
64
F. T.
Arecchi
,
G.
Giacomelli
,
A.
Lapucci
, and
R.
Meucci
, “
Dynamics of a CO 2 laser with delayed feedback: The short-delay regime
,”
Phys. Rev. A
43
,
4997
5004
(
1991
).
65
M.
Born
,
E.
Wolf
,
A. B.
Bhatia
,
P. C.
Clemmow
,
D.
Gabor
,
A. R.
Stokes
,
A. M.
Taylor
,
P. A.
Wayman
, and
W. L.
Wilcock
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
).
66
W. E.
Lamb
, Jr.
, “
Theory of an optical maser
,”
Phys. Rev.
134
,
A1429
(
1964
).
67
G. P.
Agrawal
and
N. K.
Dutta
,
Long-Wavelength Semiconductor Lasers
(
Springer
,
1986
), Vol. 1.
68
J. R.
Tredicce
,
F. T.
Arecchi
,
G. L.
Lippi
, and
G. P.
Puccioni
, “
Instabilities in lasers with an injected signal
,”
JOSA B
2
,
173
183
(
1985
).
69
A. M.
Yacomotti
,
Z.
Denis
,
A.
Biella
, and
C.
Ciuti
, “
Quantum density matrix theory for a laser without adiabatic elimination of the population inversion: Transition to lasing in the class-B limit
,”
Laser Photonics Rev.
17
,
2200377
(
2023
).
70
I.
Amelio
and
I.
Carusotto
, “
Theory of the coherence of topological lasers
,”
Phys. Rev. X
10
,
041060
(
2020
).
71
D.
Puzyrev
,
A.
Vladimirov
,
A.
Pimenov
,
S.
Gurevich
, and
S.
Yanchuk
, “
Bound pulse trains in arrays of coupled spatially extended dynamical systems
,”
Phys. Rev. Lett.
119
,
163901
(
2017
).
72
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
73
E. R.
van Dam
and
W. H.
Haemers
, “
Which graphs are determined by their spectrum?
Linear Algebra Appl.
373
,
241
272
(
2003
).
74
D.
Cvetković
,
P.
Rowlinson
, and
S. K.
Simić
, “
Signless Laplacians of finite graphs
,”
Linear Algebra Appl.
423
,
155
171
(
2007
).
75
D.
Cvetković
and
S. K.
Simić
, “
Towards a spectral theory of graphs based on the signless Laplacian, II
,”
Linear Algebra Appl.
432
,
2257
2272
(
2010
).
76
M.
Desai
and
V.
Rao
, “
A characterization of the smallest eigenvalue of a graph
,”
J. Graph Theory
18
,
181
194
(
1994
).
77
J.
Ding
and
M.-A.
Miri
, “
Mode discrimination in dissipatively coupled laser arrays
,”
Opt. Lett.
44
,
5021
5024
(
2019
).
78
R.
Lang
, “
Injection locking properties of a semiconductor laser
,”
IEEE J. Quantum Electron.
18
,
976
983
(
1982
).
You do not currently have access to this content.