We study the spreading dynamics of content on networks. To do this, we use a model in which content spreads through a bounded-confidence mechanism. In a bounded-confidence model (BCM) of opinion dynamics, the agents of a network have continuous-valued opinions, which they adjust when they interact with agents whose opinions are sufficiently close to theirs. Our content-spreading model, which one can also interpret as an independent-cascade model, introduces a twist into BCMs by using bounded confidence for the content spread itself. We define an analog of the basic reproduction number from disease dynamics that we call an opinion reproduction number. A critical value of the opinion reproduction number indicates whether or not there is an “infodemic” (i.e., a large content-spreading cascade) of content that reflects a particular opinion. By determining this critical value, one can determine whether or not an opinion dies off or propagates widely as a cascade in a population of agents. Using configuration-model networks, we quantify the size and shape of content dissemination by calculating a variety of summary statistics, and we illustrate how network structure and spreading-model parameters affect these statistics. We find that content spreads most widely when agents have a large expected mean degree or a large receptiveness to content. When the spreading process slightly exceeds the infodemic threshold, there can be longer dissemination trees than for larger expected mean degrees or receptiveness (which both promote content sharing and hence help push content spread past the infodemic threshold), even though the total number of content shares is smaller.

1
S.
Goel
,
A.
Anderson
,
J.
Hofman
, and
D. J.
Watts
, “
The structural virality of online diffusion
,”
Manage. Sci.
62
,
180
196
(
2016
).
2
J. L.
Juul
and
J.
Ugander
, “
Comparing information diffusion mechanisms by matching on cascade size
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2100786118
(
2021
).
3
G.
Eysenbach
, “
Infodemiology: The epidemiology of (mis)information
,”
Am. J. Med.
13
,
763
765
(
2002
).
4
S. C.
Briand
,
M.
Cinelli
,
T.
Nguyen
,
R.
Lewis
,
D.
Prybylski
,
C. M.
Valensise
,
V.
Colizza
,
A. E.
Tozzi
,
N.
Perra
,
A.
Baronchelli
,
M.
Tizzoni
,
F.
Zollo
,
A.
Scala
,
T.
Purnat
,
C.
Czerniak
,
A. J.
Kucharski
,
A.
Tshangela
,
L.
Zhou
, and
W.
Quattrociocchi
, “
Infodemics: A new challenge for public health
,”
Cell
184
,
6010
6014
(
2021
).
5
C.
Zielinski
, “
Infodemics and infodemiology: A short history, a long future
,”
Pan Am. J. Public Health
45
,
e40
(
2021
).
6
I. Z.
Kiss
,
J. C.
Miller
, and
P. L.
Simon
,
Mathematics of Epidemics on Networks: From Exact to Approximate Models
(
Springer
,
Cham, Switzerland
,
2017
).
7
F.
Brauer
,
C.
Castillo-Chavez
, and
Z.
Feng
,
Mathematical Models in Epidemiology
(
Springer
,
Heidelberg, Germany
,
2019
).
8
J. P.
Gleeson
,
T.
Onaga
,
P.
Fennell
,
J.
Cotter
,
R.
Burke
, and
D. J. P.
O’Sullivan
, “
Branching process descriptions of information cascades on Twitter
,”
J. Complex Netw.
8
,
cnab002
(
2021
).
9
J. B.
Bak-Coleman
,
M.
Alfano
,
W.
Barfuss
,
C. T.
Bergstrom
,
M. A.
Centeno
,
I. D.
Couzin
,
J. F.
Donges
,
M.
Galesic
,
A. S.
Gersick
,
J.
Jacquet
,
A. B.
Kao
,
R. E.
Moran
,
P.
Romanczuk
,
D. I.
Rubenstein
,
K. J.
Tombak
,
J. J.
Van Bavel
, and
E. U.
Weber
, “
Stewardship of global collective behavior
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2025764118
(
2021
).
10
A.
Guille
,
H.
Hacid
,
C.
Favre
, and
D. A.
Zighed
, “
Information diffusion in online social networks: A survey
,”
ACM Sigmod Rec.
42
,
17
28
(
2013
).
11
A. S.
Kümpel
,
V.
Karnowski
, and
T.
Keyling
, “
News sharing in social media: A review of current research on news sharing users, content, and networks
,”
Social Media Soc.
1
,
2056305115610141
(
2015
).
12
S.
Muhammed T
and
S. K.
Mathew
, “
The disaster of misinformation: A review of research in social media
,”
Inter. J. Data Sci. Anal.
13
,
271
285
(
2022
).
13
A.
Friggeri
,
L.
Adamic
,
D.
Eckles
, and
J.
Cheng
, “
Rumor cascades
,”
Proc. Inter. AAAI Conf. Web Soc. Media
8
,
101
110
(
2014
).
14
K.
Starbird
, “
Disinformation’s spread: Bots, trolls and all of us
,”
Nature
571
,
449
450
(
2019
).
15
K.-C.
Yang
,
O.
Varol
,
A. C.
Nwala
,
M.
Sayyadiharikandeh
,
E.
Ferrara
,
A.
Flammini
, and
F.
Menczer
, “Social bots: Detection and challenges,” arXiv:2312.17423 (2023).
16
A. B.
López
,
J.
Pastor-Galindo
, and
J. A.
Ruipérez-Valiente
, “Frameworks, modeling and simulations of misinformation and disinformation: A systematic literature review,” arXiv:2406.09343 (2024).
17
D.
Hartmann
,
L.
Pohlmann
,
S. M.
Wang
, and
B.
Berendt
, “A systematic review of echo chamber research: Comparative analysis of conceptualizations, operationalizations, and varying outcomes,” arXiv:2407.06631 (2024).
18
G.
Pennycook
,
Z.
Epstein
,
M.
Mosleh
,
A. A.
Arechar
,
D.
Eckles
, and
D. G.
Rand
, “
Shifting attention to accuracy can reduce misinformation online
,”
Nature
592
,
590
595
(
2021
).
19
E. C.
Baek
,
R.
Hyon
,
K.
López
,
M. A.
Porter
, and
C.
Parkinson
, “Perceived community alignment increases information sharing,” arXiv:2304.13796 (2023).
20
S.
Aral
,
L.
Muchnik
, and
A.
Sundararajan
, “
Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
21544
21549
(
2009
).
21
N. A.
Christakis
and
J. H.
Fowler
, “
Social contagion theory: Examining dynamic social networks and human behavior
,”
Stat. Med.
32
,
556
577
(
2013
).
22
J.
Borge-Holthoefer
,
R. A.
Baños
,
S.
González-Bailón
, and
Y.
Moreno
, “
Cascading behaviour in complex socio-technical networks
,”
J. Complex Netw.
1
,
3
24
(
2013
).
23
Y.
Yu
,
S.
Huang
,
Y.
Liu
, and
Y.
Tan
, “Emotions in online content diffusion,” arXiv:2011.09003 (2020).
24
N.
Pröllochs
,
D.
Bär
, and
S.
Feuerriegel
, “
Emotions in online rumor diffusion
,”
Eur. Phys. J. Data Sci.
10
,
51
(
2021
).
25
World Health Organization
; see https://www.who.int/health-topics/infodemic#tab=tab_1 for “Infodemic” (2023) (last accessed March 16, 2023).
26
N.
Calleja
, et al., “
A public health research agenda for managing infodemics: Methods and results of the first WHO infodemiology conference
,”
JMIR Infodemiol.
1
,
e30979
(
2021
).
27
J.
Zarocostas
, “
How to fight an infodemic
,”
Lancet
395
,
676
(
2020
).
28
M.
Cinelli
,
W.
Quattrociocchi
,
A.
Galeazzi
,
C. M.
Valensise
,
E.
Brugnoli
,
A. L.
Schmidt
,
P. Z. F.
Zollo
, and
A.
Scala
, “
The COVID-19 social media infodemic
,”
Sci. Rep.
10
,
16598
(
2020
).
29
R.
Gallotti
,
F.
Valle
,
N.
Castaldo
,
P.
Sacco
, and
M. De
Domenico
, “
Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics
,”
Nat. Human Behav.
4
,
1285
1293
(
2020
).
30
K.-C.
Yang
,
F.
Pierri
,
P.-M.
Hui
,
D.
Axelrod
,
C.
Torres-Lugo
,
J.
Bryden
, and
F.
Menczer
, “
The COVID-19 infodemic: Twitter versus Facebook
,”
Big Data Soc.
8
,
20539517211013861
(
2021
).
31
D. M. J.
Lazer
,
M. A.
Baum
,
Y.
Benkler
,
A. J.
Berinsky
,
K. M.
Greenhill
,
F.
Menczer
,
M. J.
Metzger
,
B.
Nyhan
,
G.
Pennycook
,
D.
Rothschild
,
M.
Schudson
,
S. A.
Sloman
,
C. R.
Sunstein
,
E. A.
Thorson
,
D. J.
Watts
, and
J. L.
Zittrain
, “
The science of fake news
,”
Science
369
,
1094
1096
(
2018
).
32
D. J.
Watts
,
D. M.
Rothschild
, and
M.
Mobius
, “
Measuring the news and its impact on democracy
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e1912443118
(
2021
).
33
N.
Rabb
,
L.
Cowen
,
J. P.
de Ruiter
, and
M.
Scheutz
, “
Cognitive cascades: How to model (and potentially counter) the spread of fake news
,”
PLoS ONE
17
,
e0261811
(
2022
).
34
H.
Noorazar
,
K. R.
Vixie
,
A.
Talebanpour
, and
Y.
Hu
, “
From classical to modern opinion dynamics
,”
Inter. J Modern Phys. C
31
,
2050101
(
2020
).
35
H.
Noorazar
, “
Recent advances in opinion propagation dynamics: A 2020 survey
,”
Eur. Phys. J. Plus
135
,
521
(
2020
).
36
A. F.
Peralta
,
J.
Kertész
, and
G.
Iñiguez
, “Opinion dynamics in social networks: From models to data,” arXiv:2201.01322 (2022).
37
J.
Lorenz
, “
Continuous opinion dynamics under bounded confidence: A survey
,”
Inter. J. Mod. Phys. C
18
,
1819
1838
(
2007
).
38
X. F.
Meng
,
R. A.
Van Gorder
, and
M. A.
Porter
, “
Opinion formation and distribution in a bounded-confidence model on various networks
,”
Phys. Rev. E
97
,
022312
(
2018
).
39
C.
Bernardo
,
C.
Altafini
,
A.
Proskurnikov
, and
F.
Vasca
, “
Bounded confidence opinion dynamics: A survey
,”
Automatica
159
,
111302
(
2024
).
40
H. Z.
Brooks
and
M. A.
Porter
, “
A model for the influence of media on the ideology of content in online social networks
,”
Phys. Rev. Res.
2
,
023041
(
2020
).
41
A.
Hickok
,
Y.
Kureh
,
H. Z.
Brooks
,
M.
Feng
, and
M. A.
Porter
, “
A bounded-confidence model of opinion dynamics on hypergraphs
,”
SIAM J. Appl. Dyn. Syst.
21
,
1
32
(
2022
).
42
C.
Wang
, “
Opinion dynamics with higher-order bounded confidence
,”
Entropy
24
,
1300
(
2022
).
43
B. D.
Goddard
,
B.
Gooding
,
H.
Short
, and
G. A.
Pavliotis
, “
Noisy bounded confidence models for opinion dynamics: The effect of boundary conditions on phase transitions
,”
IMA J. Appl. Math.
87
,
80
110
(
2022
).
44
C.
Bernardo
,
C.
Altafini
, and
F.
Vasca
, “
Finite-time convergence of opinion dynamics in homogeneous asymmetric bounded confidence models
,”
Eur. J. Control
68
,
100674
(
2022
).
45
H.
Schawe
and
L.
Hernández
, “
Collective effects of the cost of opinion change
,”
Sci. Rep.
10
,
13825
(
2020
).
46
G. J.
Li
and
M. A.
Porter
, “
Bounded-confidence model of opinion dynamics with heterogeneous node-activity levels
,”
Phys. Rev. Res.
5
,
023179
(
2023
).
47
H. Z.
Brooks
,
P. S.
Chodrow
, and
M. A.
Porter
, “
Emergence of polarization in a sigmoidal bounded-confidence model of opinion dynamics
,”
SIAM J. Appl. Dyn. Syst.
23
,
1442
1470
(
2024
).
48
C.
Kann
and
M.
Feng
, “Repulsive bounded-confidence model of opinion dynamics in polarized communities,” arXiv:2301.02210 (2023).
49
U.
Kan
,
M.
Feng
, and
M. A.
Porter
, “
An adaptive bounded-confidence model of opinion dynamics on networks
,”
J. Complex Netw.
11
,
cnac055
(
2023
).
50
G. L.
Li
,
S.
Motsch
, and
D.
Weber
, “
Bounded confidence dynamics and graph control: Enforcing consensus
,”
Netw. Heterogeneous Media
15
,
489
517
(
2020
).
51
G. J.
Li
,
J.
Luo
, and
M. A.
Porter
, “Bounded-confidence models of opinion dynamics with adaptive confidence bounds,” SIAM J. Appl. Dyn. Syst. (to be published), arXiv:2303.07563.
52
M. A.
Porter
and
J. P.
Gleeson
, Dynamical systems on networks: A tutorial, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, Vol. 4 (Springer, Cham, Switzerland, 2016).
53
M.
Sahimi
,
Applications of Percolation Theory
, 2nd ed (
Springer
,
Heidelberg, Germany
,
2023
).
54
A.
Malthe-Sørenssen
,
Percolation Theory Using Python
(
Springer
,
Cham, Switzerland
,
2024
).
55
S.
Lehmann
and
Y.-Y.
Ahn
,
Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks
(
Springer
,
Cham, Switzerland
,
2018
).
56
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
57
J.
Bedson
,
L. A.
Skrip
,
D.
Pedi
,
S.
Abramowitz
,
S.
Carter
,
M. F.
Jalloh
,
S.
Funk
,
N.
Gobat
,
T.
Giles-Vernick
,
G.
Chowell
,
J. R.
de Almeida
,
R.
Elessawi
,
S. V.
Scarpino
,
R. A.
Hammond
,
S.
Briand
,
J. M.
Epstein
,
L.
Hébert-Dufresne
, and
B. M.
Althouse
, “
A review and agenda for integrated disease models including social and behavioural factors
,”
Nat. Human Behav.
5
,
834
846
(
2021
).
58
L.
Weng
,
F.
Menczer
, and
Y.-Y.
Ahn
, “
Virality prediction and community structure in social networks
,”
Sci. Rep.
3
,
2522
(
2013
).
59
K.
Lerman
, “
Information is not a virus, and other consequences of human cognitive limits
,”
Future Int.
8
,
21
(
2016
).
60
P.-M.
Hui
,
L.
Weng
,
A.
Sahami Shirazi
,
Y.-Y.
Ahn
, and
F.
Menczer
, “Scalable detection of viral memes from diffusion patterns,” in Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks, edited by S. Lehmann and Y.-Y. Ahn (Springer, Cham, Switzerland, 2018), pp. 197–211.
61
H.
Olsson
and
M.
Galesic
, “
Analogies for modeling belief dynamics
,”
Trends Cognit. Sci.
28
,
907
923
(
2024
).
62
G.
Cencetti
,
D. A.
Contreras
,
M.
Mancastroppa
, and
A.
Barrat
, “
Distinguishing simple and complex contagion processes on networks
,”
Phys. Rev. Lett.
130
,
247401
(
2023
).
63
G.
St-Onge
,
L.
Hébert-Dufresne
, and
A.
Allard
, “
Nonlinear bias toward complex contagion in uncertain transmission settings
,”
Proc. Natl. Acad. Sci. U.S.A.
121
,
e2312202121
(
2024
).
64
D. A.
Contreras
,
G.
Cencetti
, and
A.
Barrat
, “
Infection patterns in simple and complex contagion processes on networks
,”
PLoS. Comput. Biol.
20
,
e1012206
(
2024
).
65
P.-A.
Noël
,
A.
Allard
,
L.
Hébert-Dufresne
,
V.
Marceau
, and
L. J.
Dubé
, “
Propagation on networks: An exact alternative perspective
,”
Phys. Rev. E
85
,
031118
(
2012
).
66
M.
Gomez Rodriguez
,
J.
Leskovec
, and
A.
Krause
, “Inferring networks of diffusion and influence,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10 (Association for Computing Machinery, New York, NY, USA, 2010), pp. 1019–1028.
67
I. V.
Kozitsin
, “
Opinion formation in online public debates structured in information cascades: A system-theoretic viewpoint
,”
Computers
12
,
178
(
2023
).
68
R. A.
Baños
,
J.
Borge-Holthoefer
, and
Y.
Moreno
, “
The role of hidden influentials in the diffusion of online information cascades
,”
Eur. Phys. J. Data Sci.
2
,
6
(
2013
).
69
C.
Xu
,
P. M.
Hui
,
O. K.
Jha
,
C.
Xia
, and
N. F.
Johnson
, “Preventing the spread of online harms: Physics of contagion across multi-platform social media and metaverses,” arXiv:2201.04249 (2022).
70
S.
Blumberg
and
J. O.
Lloyd-Smith
, “
Inference of R 0 and transmission heterogeneity from the size distribution of stuttering chains
,”
PLoS. Comput. Biol.
9
,
e1002993
(
2013
).
71
A complementary approach is to modify opinion models by incorporating content.101 
72
D.
Kempe
,
J.
Kleinberg
, and
E.
Tardos
, “Maximizing the spread of influence through a social network,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03 (Association for Computing Machinery, New York, NY, USA, 2003), pp. 137–146.
73
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
, “
Critical phenomena in complex networks
,”
Rev. Mod. Phys.
80
,
1275
(
2008
).
74
M.
Newman
,
Networks
, 2nd ed. (
Oxford University Press, Oxford, UK
,
2018
).
75
S.
Vosoughi
,
D.
Roy
, and
S.
Aral
, “
The spread of true and false news online
,”
Science
359
,
1146
1151
(
2018
).
76
A. V.
Proskurnikov
and
R.
Tempo
, “
A tutorial on modeling and analysis of dynamic social networks. Part II
,”
Ann. Rev. Control
45
,
166
190
(
2018
).
77
S.
Wasserman
and
K.
Faust
,
Social Network Analysis: Methods and Applications
(
Cambridge University Press
,
Cambridge, UK
,
1994
).
78
F.
Bullo
,
Lectures on Network Systems
, Edition 1.7 (
Kindle Direct Publishing, Santa Barbara
,
CA, USA
,
2024
); see https://fbullo.github.io/lns/.
79
H. Z.
Brooks
, “A tutorial on networks in social systems: A mathematical modeling perspective,” arXiv:2302.00801 (2023).
80
K.
Lerman
and
R.
Ghosh
, “Information contagion: An empirical study of the spread of news on Digg and Twitter social networks,” in Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, ICWSM-10 (Association for the Advancement of Artificial Intelligence, Washington, DC, USA, 2010).
81
J. P.
Gleeson
,
J. A.
Ward
,
K. P.
O’Sullivan
, and
W. T.
Lee
, “
Competition-induced criticality in a model of meme popularity
,”
Phys. Rev. Lett.
112
,
048701
(
2014
).
82
L. A.
Adamic
,
T. M.
Lento
,
E.
Adar
, and
P. C.
Ng
, “Information evolution in social networks,” in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM ’16 (Association for Computing Machinery, New York, NY, USA, 2016), pp. 473–482.
83
S.-W.
Oh
and
M. A.
Porter
, “
Complex contagions with timers
,”
Chaos
28
,
033101
(
2018
).
84
B.
Min
and
M.
San Miguel
, “
Competing contagion processes: Complex contagion triggered by simple contagion
,”
Sci. Rep.
8
,
10422
(
2018
).
85
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
, “
Random graphs with arbitrary degree distributions and their applications
,”
Phys. Rev. E
64
,
026118
(
2001
).
86
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
87
P.-A.
Noël
,
B.
Davoudi
,
R. C.
Brunham
,
L. J.
Dubé
, and
B.
Pourbohloul
, “
Time evolution of epidemic disease on finite and infinite networks
,”
Phys. Rev. E
79
,
026101
(
2009
).
88
B. K.
Fosdick
,
D. B.
Larremore
,
J.
Nishimura
, and
J.
Ugander
, “
Configuring random graph models with fixed degree sequences
,”
SIAM Rev.
60
,
315
355
(
2018
).
89
H. Z.
Brooks
, (2024). “Bounded confidence spreading process: Simulation code,” GitHub. Available at https://github.com/hzinnbrooks/bounded-confidence-spreading-process.
90
S.
Peng
,
Y.
Zhou
,
L.
Cao
,
S.
Yu
,
J.
Niu
, and
W.
Jia
, “
Influence analysis in social networks: A survey
,”
J. Netw. Comput. Appl.
106
,
17
32
(
2018
).
91
B.
She
,
P. E.
Paré
, and
M.
Hale
, “Distributed reproduction numbers of networked epidemics,” in IEEE Control Systems Letters, American Control Conference (ACC) (Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2023).
92
S.
Melnik
,
M. A.
Porter
,
P. J.
Mucha
, and
J. P.
Gleeson
, “
Dynamics on modular networks with heterogeneous correlations
,”
Chaos
24
,
023106
(
2014
).
93
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Netw.
2
,
203
271
(
2014
).
94
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
95
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1031
,
1
59
(
2023
).
96
G.
Deffuant
,
D.
Neau
,
F.
Amblard
, and
G.
Weisbuch
, “
Mixing beliefs among interacting agents
,”
Adv. Complex Syst.
3
,
87
98
(
2000
).
97
M. A.
Porter
, “Quantum chaos in vibrating billiard systems,” Ph.D. thesis (Cornell University, 2002).
98
M. A.
Porter
,
R.
Carretero-González
,
P. G.
Kevrekidis
, and
B. A.
Maolmed
, “
Nonlinear lattice dynamics of Bose–Einstein condensates
,”
Chaos
15
,
015115
(
2005
).
99
M. A.
Porter
,
N. J.
Zabusky
, and
D. K.
Campbell
, “
Fermi, Pasta, Ulam and the birth of experimental mathematics
,”
Am. Sci.
97
,
214
221
(
2009
).
100
H.
Nelson
,
M. A.
Porter
, and
B.
Choubey
, “
Variability in Fermi–Pasta–Ulam–Tsingou arrays can prevent recurrences
,”
Phys. Rev. E
98
,
062210
(
2018
).
101
H.
Wang
,
Z.
Chen
, and
V.
Zhao
, “Message-enhanced DeGroot model,” arXiv:2402.18867 (2024).
You do not currently have access to this content.