Since groundbreaking works in the 1980s it is well-known that simple deterministic dynamical systems can display intermittent dynamics and weak chaos leading to anomalous diffusion. A paradigmatic example is the Pomeau–Manneville (PM) map which, suitably lifted onto the whole real line, was shown to generate superdiffusion that can be reproduced by stochastic Lévy walks (LWs). Here, we report that this matching only holds for parameter values of the PM map that are of Lebesgue measure zero in its two-dimensional parameter space. This is due to a bifurcation scenario that the map exhibits under variation of one parameter. Constraining this parameter to specific singular values at which the map generates superdiffusion by varying the second one, as has been done in the previous literature, we find quantitative deviations between deterministic diffusion and diffusion generated by stochastic LWs in a particular range of parameter values, which cannot be cured by simple LW modifications. We also explore the effect of aging on superdiffusion in the PM map and show that this yields a profound change of the diffusive properties under variation of the aging time, which should be important for experiments. Our findings demonstrate that even in this simplest well-studied setting, a matching of deterministic and stochastic diffusive properties is non-trivial.

1
Diffusive Spreading in Nature, Technology and Society
, edited by
A.
Bunde
,
J.
Caro
,
J.
Kärger
, and
G.
Vogl
(
Springer
,
Berlin
,
2018
).
2
J.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
3
W.
Coffey
,
Y. P.
Kalmykov
, and
J. T.
Waldron
,
The Langevin Equation
(
World Scientific
,
Singapore
,
2004
).
4
Anomalous Transport: Foundations and Applications
, edited by
R.
Klages
,
G.
Radons
, and
I. M.
Sokolov
(
Wiley-VCH
,
Berlin
,
2008
).
5
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
6
R.
Metzler
,
J.-H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
,
Phys. Chem. Chem. Phys.
16
,
24128
(
2014
).
7
F.
Höfling
and
T.
Franosch
,
Rep. Prog. Phys.
76
,
046602/1
(
2013
).
8
V.
Zaburdaev
,
S.
Denisov
, and
J.
Klafter
,
Rev. Mod. Phys.
87
,
483
(
2015
).
9
D.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic Press
,
London
,
1990
).
10
W.
Hoover
,
Time Reversibility, Computer Simulation, and Chaos
(
World Scientific
,
Singapore
,
1999
).
11
P.
Gaspard
,
Chaos, Scattering and Statistical Mechanics
(
Cambridge University Press
,
Cambridge
,
1998
).
12
J. R.
Dorfman
, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics Vol. 14 (Cambridge University Press, Cambridge, 1999).
14
R.
Klages
, Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics, Advanced Series in Nonlinear Dynamics Vol. 24 (World Scientific, Singapore, 2007).
15
P.
Castiglione
,
M.
Falcioni
,
A.
Lesne
, and
A.
Vulpiani
,
Chaos and Coarse Graining in Statistical Mechanics
(
Cambridge University Press
,
Cambridge
,
2008
).
16
H.
Fujisaka
and
S.
Grossmann
,
Z. Phys. B
48
,
261
(
1982
).
17
M.
Schell
,
S.
Fraser
, and
R.
Kapral
,
Phys. Rev. A
26
,
504
(
1982
).
18
T.
Geisel
and
J.
Nierwetberg
,
Phys. Rev. Lett.
48
,
7
(
1982
).
19
T.
Geisel
and
S.
Thomae
,
Phys. Rev. Lett.
52
,
1936
(
1984
).
20
T.
Geisel
,
J.
Nierwetberg
, and
A.
Zacherl
,
Phys. Rev. Lett.
54
,
616
(
1985
).
21
M.
Shlesinger
and
J.
Klafter
,
Phys. Rev. Lett.
54
,
2551
(
1985
).
22
G.
Zumofen
and
J.
Klafter
,
Phys. Rev. E
47
,
851
(
1993
).
23
G.
Zumofen
and
J.
Klafter
,
Physica D
69
,
436
(
1993
).
24
R.
Klages
and
J. R.
Dorfman
,
Phys. Rev. Lett.
74
,
387
(
1995
).
25
R.
Klages
and
J.
Dorfman
,
Phys. Rev. E
55
,
R1247
(
1997
).
26
E.
Barkai
and
J.
Klafter
,
Phys. Rev. Lett.
79
,
2245
(
1997
).
27
R.
Klages
and
J. R.
Dorfman
,
Phys. Rev. E
59
,
5361
(
1999
).
28
R.
Klages
and
N.
Korabel
,
J. Phys. A
35
,
4823
(
2002
).
29
30
N.
Korabel
,
A.
Chechkin
,
R.
Klages
,
I.
Sokolov
, and
V.
Gonchar
,
Europhys. Lett.
70
,
63
(
2005
).
31
N.
Korabel
,
R.
Klages
,
A.
Chechkin
,
I.
Sokolov
, and
V.
Gonchar
,
Phys. Rev. E
75
,
036213
(
2007
).
32
T.
Albers
,
D.
Müller-Bender
,
L.
Hille
, and
G.
Radons
,
Phys. Rev. Lett.
128
,
074101
(
2022
).
34
R.
Artuso
,
G.
Casati
, and
R.
Lombardi
,
Phys. Rev. Lett.
71
,
62
(
1993
).
35
C.
Dettmann
and
P.
Cvitanovic
,
Phys. Rev. E
56
,
6687
(
1997
).
36
C.
Dettmann
and
P.
Dahlqvist
,
Phys. Rev. E
57
,
5303
(
1998
).
37
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
(
Niels Bohr Institute
,
Copenhagen
,
2007
), webbook under chaosbook.org.
38
X.-J.
Wang
and
C.-K.
Hu
,
Phys. Rev. E
48
,
728
(
1993
).
39
R.
Stoop
,
W.-H.
Steeb
, and
G.
Radons
,
Phys. Lett. A
202
,
195
(
1995
).
40
J.
Groeneveld
and
R.
Klages
,
J. Stat. Phys.
109
,
821
(
2002
).
41
S.
Tasaki
and
P.
Gaspard
,
Physica D
187
,
51
(
2004
).
42
P.
Gaspard
and
X.-J.
Wang
,
Proc. Natl. Acad. Sci. USA
85
,
4591
(
1988
).
43
G.
Zaslavsky
and
D.
Usikov
, Weak Chaos and Quasi-Regular Patterns, Cambridge Nonlinear Science Series (Cambridge University Press, Cambridge, 2001).
44
R.
Klages
, in From Hamiltonian Chaos to Complex Systems, edited by X. Leoncini and M. Leonetti (Springer, Berlin, 2013), pp. 3–42.
45
P.
Manneville
and
Y.
Pomeau
,
Phys. Lett. A
75
,
1
(
1979
).
47
Y.
Pomeau
and
P.
Manneville
,
Commun. Math. Phys.
74
,
189
(
1980
).
48
M.
Shlesinger
,
J.
Klafter
, and
Y.
Wong
,
J. Stat. Phys.
27
,
499
(
1982
).
49
J.
Klafter
,
A.
Blumen
, and
M.
Shlesinger
,
Phys. Rev. A
35
,
3081
(
1987
).
50
M.
Shlesinger
,
B.
West
, and
J.
Klafter
,
Phys. Rev. Lett.
58
,
1100
(
1987
).
51
V.
Zaburdaev
,
I.
Fouxon
,
S.
Denisov
, and
E.
Barkai
,
Phys. Rev. Lett.
117
,
270601
(
2016
).
52
T.
Albers
and
G.
Radons
,
Phys. Rev. Lett.
120
,
104501
(
2018
).
53
T.
Albers
and
G.
Radons
,
Phys. Rev. E
105
,
014113
(
2022
).
54
M.
Bothe
,
F.
Sagues
, and
I.
Sokolov
,
Phys. Rev. E
100
,
012117
(
2019
).
55
D.
Pegler
, “Anomalous diffusion in weakly chaotic systems,” Master’s thesis (Queen Mary, University of London, London, 2017).
56
A.
Schulz
, “Parameter-dependent deterministic diffusion in intermittent Pomeau-Manneville maps,” Master’s thesis (Technische Universität Dresden, Dresden, Germany, 2020).
57
N.
Korabel
and
R.
Klages
,
Phys. Rev. Lett.
89
,
214102
(
2002
).
58
N.
Korabel
and
R.
Klages
,
Physica D
187
,
66
(
2004
).
59
A.
Rechester
and
R.
White
,
Phys. Rev. Lett.
44
,
1586
(
1980
).
60
J.
Machta
and
R.
Zwanzig
,
Phys. Rev. Lett.
50
,
1959
(
1983
).
61
R.
Klages
and
C.
Dellago
,
J. Stat. Phys.
101
,
145
(
2000
).
62
T.
Gilbert
and
D. P.
Sanders
,
J. Phys. A: Math. Theor.
43
,
035001/1
(
2010
).
63
R.
Klages
,
S.
Gallegos
,
J.
Solanpää
,
M.
Sarvilahti
, and
E.
Räsänen
,
Phys. Rev. Lett.
122
,
064102
(
2019
).
64
R.
Klages
, “Deterministic diffusion in one-dimensional chaotic dynamical systems,” Doctoral thesis (Technische Universität Berlin, Berlin, 1995).
66
G.
Knight
and
R.
Klages
,
Phys. Rev. E
84
,
041135/1
(
2011
).
67
J.
Klafter
and
I.
Sokolov
,
First Steps in Random Walks: From Tools to Applications
(
Oxford University Press
,
New York
,
2011
).
68
E.
Montroll
and
G.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
69
E.
Montroll
and
H.
Scher
,
J. Stat. Phys.
9
,
101
(
1973
).
70
H.
Scher
and
E.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
71
S.
Picoli
, Jr.,
R.
Mendes
,
L.
Malacarne
, and
R.
Santos
,
Braz. J. Phys.
39
,
468
(
2009
).
72
G.
Knight
and
R.
Klages
,
Phys. Rev. E
84
,
041135
(
2011
).
73
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1993
).
74
M.
Demers
and
B.
Fernandez
,
Trans. Am. Math. Soc.
368
,
4907
(
2016
).
77
E.
Barkai
and
G.
Margolin
,
Israel J. Chem.
44
,
353
(
2004
).
78
T.
Akimoto
and
E.
Barkai
,
Phys. Rev. E
87
,
032915
(
2013
).
79
80
82
N.
Korabel
and
E.
Barkai
,
Phys. Rev. E
82
,
016209
(
2010
).
83
D.
Froemberg
and
E.
Barkai
,
Eur. Phys. J. B
86
,
331
(
2013
).
84
D.
Froemberg
and
E.
Barkai
,
Phys. Rev. E
87
,
030104(R)
(
2013
).
87
F.
Stefani
,
J.
Hoogenboom
, and
E.
Barkai
,
Phys. Today
62
,
34
(
2009
).
You do not currently have access to this content.