Porous earth materials exhibit large-scale deformation patterns, such as deformation bands, which emerge from complex small-scale interactions. This paper introduces a cross-diffusion framework designed to capture these multiscale, multiphysics phenomena, inspired by the study of multi-species chemical systems. A microphysics-enriched continuum approach is developed to accurately predict the formation and evolution of these patterns. Utilizing a cellular automata algorithm for discretizing the porous network structure, the proposed framework achieves substantial computational efficiency in simulating the pattern formation process. This study focuses particularly on a dynamic regime termed “cross-diffusion wave,” an instability in porous media where cross-diffusion plays a significant role—a phenomenon experimentally observed in materials like dry snow. The findings demonstrate that external thermodynamic forces can initiate pattern formation in cross-coupled dynamic systems, with the propagation speed of deformation bands primarily governed by cross-diffusion and a specific cross-reaction coefficient. Owing to the universality of thermodynamic force–flux relationships, this study sheds light on a generic framework for pattern formation in cross-coupled multi-constituent reactive systems.

1.
S.
Ganguly
,
U.
Neogi
,
A. S.
Chakrabarti
, and
A.
Chakraborti
, “Reaction-diffusion equations with applications to economic systems,” in Econophysics and Sociophysics: Recent Progress and Future Directions, New Economic Windows, edited by F. Abergel, H. Aoyama, B. K. Chakrabarti, A. Chakraborti, N. Deo, D. Raina, and I. Vodenska (Springer International Publishing, Cham, 2017), pp. 131–144.
2.
Y.
Luo
,
S.
Tang
,
Z.
Teng
, and
L.
Zhang
, “
Global dynamics in a reaction–diffusion multi-group SIR epidemic model with nonlinear incidence
,”
Nonlinear Anal.: Real World Appl.
50
,
365
385
(
2019
).
3.
N.
Bellomo
,
N.
Outada
,
J.
Soler
,
Y.
Tao
, and
M.
Winkler
, “
Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision
,”
Math. Models Methods Appl. Sci.
32
,
713
792
(
2022
).
4.
M.
Hu
,
C.
Schrank
, and
K.
Regenauer-Lieb
, “
Cross-diffusion waves in hydro-poro-mechanics
,”
J. Mech. Phys. Solids
135
,
103632
(
2020
).
5.
C.
Liu
,
M.
Hu
, and
K.
Regenauer-Lieb
, “Liesegang patterns interpreted as a chemo-hydromechanical instability,” in Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials, Springer Series in Geomechanics and Geoengineering, edited by E. Pasternak and A. Dyskin (Springer Nature Switzerland, Cham, 2022), pp. 59–66.
6.
C.
Liu
,
V. M.
Calo
,
K.
Regenauer-Lieb
, and
M.
Hu
, “
Coefficients of reaction-diffusion processes derived from patterns in rocks
,”
J. Geophys. Res.: Solid Earth
28
,
e2022JB026253
, https://doi.org/10.1029/2022JB026253 (
2023
).
7.
E.
Veveakis
and
K.
Regenauer-Lieb
, “
Cnoidal waves in solids
,”
J. Mech. Phys. Solids
78
,
231
248
(
2015
).
8.
J. R.
Rice
and
M. P.
Cleary
, “
Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents
,”
Rev. Geophys.
14
,
227
241
, https://doi.org/10.1029/RG014i002p00227 (
1976
).
9.
Q.
Sun
,
X.
Chen
,
K.
Regenauer-Lieb
, and
M.
Hu
, “
A thermodynamically based modified Cam-Clay model for post-bifurcation behavior of deformation bands
,”
J. Geophys. Res.: Solid Earth
129
,
e2023JB028100
, https://doi.org/10.1029/2023JB028100 (
2024
).
10.
S.
Alevizos
,
T.
Poulet
,
M.
Sari
,
M.
Lesueur
,
K.
Regenauer-Lieb
, and
M.
Veveakis
, “
A framework for fracture network formation in overpressurised impermeable shale: Deformability versus diagenesis
,”
Rock Mech. Rock Eng.
50
,
689
703
(
2017
).
11.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
12.
K.
Regenauer-Lieb
and
M.
Hu
, “
Onsager’s reciprocal relationship applied to multiphysics poromechanics
,”
Forces Mech.
12
,
100213
(
2023
).
13.
V. K.
Vanag
and
I. R.
Epstein
, “
Cross-diffusion and pattern formation in reaction–diffusion systems
,”
Phys. Chem. Chem. Phys.
11
,
897
912
(
2009
).
14.
M. A.
Rahman
and
M. Z.
Saghir
, “
Thermodiffusion or Soret effect: Historical review
,”
Int. J. Heat Mass Transfer
73
,
693
705
(
2014
).
15.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Bull. Math. Biol.
52
,
153
197
(
1952
).
16.
M. A.
Tsyganov
and
V. N.
Biktashev
, “
Classification of wave regimes in excitable systems with linear cross diffusion
,”
Phys. Rev. E
90
,
062912
(
2014
).
17.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
18.
M. A.
Tsyganov
,
J.
Brindley
,
A. V.
Holden
, and
V. N.
Biktashev
, “
Quasisoliton interaction of pursuit-evasion waves in a predator-prey system
,”
Phys. Rev. Lett.
91
,
218102
(
2003
).
19.
K.
Regenauer-Lieb
,
M. M.
Hu
,
C.
Schrank
,
X.
Chen
,
S. P.
Clavijo
,
U.
Kelka
,
A.
Karrech
,
O.
Gaede
,
T.
Blach
,
H.
Roshan
,
A. B.
Jacquey
,
P.
Szymczak
, and
Q. P.
Sun
, “
Cross-diffusion waves resulting from multiscale, multiphysics instabilities: Application to earthquakes
,”
Solid Earth
12
,
1829
1849
(
2021
).
20.
M.
Hu
,
Q.
Sun
,
C.
Schrank
, and
K.
Regenauer-Lieb
, “
Cross-scale dynamic interactions in compacting porous media as a trigger to pattern formation
,”
Geophys. J. Int.
230
,
1280
1291
(
2022
).
21.
K.
Regenauer-Lieb
and
M.
Hu
, “
Emergence of precursor instabilities in geo-processes: Insights from dense active matter
,”
Heliyon
9
,
e22701
(
2023
).
22.
D. J.
Holcomb
and
W. A.
Olsson
, “
Compaction localization and fluid flow
,”
J. Geophys. Res.: Solid Earth
108
,
2290
, https://doi.org/10.1029/2001JB000813 (
2003
).
23.
Q.
Sun
,
K.
Regenauer-Lieb
, and
M.
Hu
, “
Inversion of fluid-release rates from episodic tremor and slip signals in subduction zones via a coarse-grained reaction diffusion model
,”
Phys. Earth Planet. Interiors
353
,
107223
(
2024
).
24.
F.
Guillard
,
P.
Golshan
,
L.
Shen
,
J. R.
Valdes
, and
I.
Einav
, “
Dynamic patterns of compaction in brittle porous media
,”
Nat. Phys.
11
,
835
838
(
2015
).
25.
T. W.
Barraclough
,
J. R.
Blackford
,
S.
Liebenstein
,
S.
Sandfeld
,
T. J.
Stratford
,
G.
Weinländer
, and
M.
Zaiser
, “
Propagating compaction bands in confined compression of snow
,”
Nat. Phys.
13
,
272
275
(
2017
).
26.
E. P.
Zemskov
,
K.
Kassner
, and
M. J. B.
Hauser
, “
Wavy fronts and speed bifurcation in excitable systems with cross diffusion
,”
Phys. Rev. E
77
,
036219
(
2008
).
27.
R.
Mandal
,
P. J.
Bhuyan
,
P.
Chaudhuri
,
C.
Dasgupta
, and
M.
Rao
, “
Extreme active matter at high densities
,”
Nat. Commun.
11
,
2581
(
2020
).
28.
F.
Darve
,
G.
Servant
,
F.
Laouafa
, and
H. D. V.
Khoa
, “
Failure in geomaterials: Continuous and discrete analyses
,”
Comput. Methods Appl. Mech. Eng.
193
,
3057
3085
(
2004
).
29.
S.
Gao
,
L.
Chang
,
X.
Wang
,
C.
Liu
,
X.
Li
, and
Z.
Wang
, “
Cross-diffusion on multiplex networks
,”
New J. Phys.
22
,
053047
(
2020
).
30.
F.
Battiston
,
E.
Amico
,
A.
Barrat
,
G.
Bianconi
,
G.
Ferraz de Arruda
,
B.
Franceschiello
,
I.
Iacopini
,
S.
Kéfi
,
V.
Latora
, and
Y.
Moreno
, “
The physics of higher-order interactions in complex systems
,”
Nat. Phys.
17
,
1093
1098
(
2021
).
31.
V. K.
Vanag
, “
Plasticity in networks of active chemical cells with pulse coupling
,”
Chaos
32
,
123108
(
2022
).
32.
K.
Regenauer-Lieb
,
M.
Hu
,
C.
Schrank
,
X.
Chen
,
S. P.
Clavijo
,
U.
Kelka
,
A.
Karrech
,
O.
Gaede
,
T.
Blach
,
H.
Roshan
, and
A. B.
Jacquey
, “
Cross-diffusion waves resulting from multiscale, multi-physics instabilities: Theory
,”
Solid Earth
12
,
869
883
(
2021
).
33.
Q.
Sun
,
M.
Hu
, and
K.
Regenauer-Lieb
, “Cross-scale dynamic interactions in compacting porous geomaterials as a trigger to instabilities,” in Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials, Springer Series in Geomechanics and Geoengineering, edited by E. Pasternak and A. Dyskin (Springer Nature Switzerland, Cham, 2023), pp. 67–73.
34.
P.
Perzyna
, “
The constitutive equations for rate sensitive plastic materials
,”
Quart. Appl. Math.
20
,
321
332
(
1963
).
35.
J. H.
Dieterich
and
B. D.
Kilgore
, “
Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic
,”
Tectonophysics
256
,
219
239
(
1996
).
36.
H.
Tanaka
,
K.
Udaka
, and
T.
Nosaka
, “
Strain rate dependency of cohesive soils in consolidation settlement
,”
Soils Found.
46
,
315
322
(
2006
).
37.
W. A.
Olsson
, “
Quasistatic propagation of compaction fronts in porous rock
,”
Mech. Mater.
33
,
659
668
(
2001
).
38.
X.
Chen
,
H.
Roshan
,
A.
Lv
,
M.
Hu
, and
K.
Regenauer-Lieb
, “
The dynamic evolution of compaction bands in highly porous carbonates: The role of local heterogeneity for nucleation and propagation
,”
Prog. Earth Planet. Sci.
7
,
28
(
2020
).
39.
P.
Baud
,
E.
Klein
, and
T.-f.
Wong
, “
Compaction localization in porous sandstones: Spatial evolution of damage and acoustic emission activity
,”
J. Struct. Geol.
26
,
603
624
(
2004
).
40.
S.
Tembe
,
P.
Baud
, and
T.-f.
Wong
, “
Stress conditions for the propagation of discrete compaction bands in porous sandstone
,”
J. Geophys. Res.: Solid Earth
113
,
B09409
(
2008
).
41.
J. R.
Valdes
,
F. L.
Fernandes
, and
I.
Einav
, “
Periodic propagation of localized compaction in a brittle granular material
,”
Granular Matter
14
,
71
76
(
2012
).
42.
M.
Yasui
and
M.
Arakawa
, “
Experimental study on the rate dependent strength of ice-silica mixture with silica volume fractions up to 0.63
,”
Geophys. Res. Lett.
35
,
L12206
(
2008
).
43.
G. S.
Hartley
, “
Diffusion and distribution in a solvent of graded composition
,”
Trans. Faraday Soc.
27
,
10
29
(
1931
).
44.
L.
Darken
, “
Diffusion of carbon in austenite with a discontinuity in composition
,”
Metall. Mater. Trans. A
41
,
1607
1615
(
2010
).
45.
B.
Chopard
, “Cellular automata and lattice Boltzmann modeling of physical systems,” in Handbook of Natural Computing, edited by G. Rozenberg, T. Bäck, and J. N. Kok (Springer, Berlin, 2012), pp. 287–331.
46.
T.
Toffoli
, “
Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics
,”
Physica D
10
,
117
127
(
1984
).
47.
S.
Ohmori
and
Y.
Yamazaki
, “
Cellular automata for spatiotemporal pattern formation from reaction–diffusion partial differential equations
,”
J. Phys. Soc. Jpn.
85
,
014003
(
2016
).
48.
T.
Ishida
, “
A model of octopus epidermis pattern mimicry mechanisms using inverse operation of the Turing reaction model
,”
PLoS One
16
,
e0256025
(
2021
).
49.
X.
Wang
and
I.
Baker
, “
Observation of the microstructural evolution of snow under uniaxial compression using X-ray computed microtomography
,”
JGR Atmospheres
118
,
12371
12382
(
2013
).
50.
M.
Mellor
,
A Review of Basic Snow Mechanics
(
US Army Cold Regions Research and Engineering Laboratory
,
Hanover, NH
,
1974
).
51.
J. R.
Blackford
, “
Sintering and microstructure of ice: A review
,”
J. Phys. D: Appl. Phys.
40
,
R355
(
2007
).
52.
M.
Yasui
,
E. M.
Schulson
, and
C. E.
Renshaw
, “
Experimental studies on mechanical properties and ductile-to-brittle transition of ice-silica mixtures: Young’s modulus, compressive strength, and fracture toughness
,”
J. Geophys. Res.: Solid Earth
122
,
6014
6030
, https://doi.org/10.1002/2017JB014029 (
2017
).
53.
K. T.
Gillen
,
D. C.
Douglass
, and
M. J. R.
Hoch
, “
Self-diffusion in liquid water to 31 ° C
,”
J. Chem. Phys.
57
,
5117
5119
(
2003
).
54.
T.
Ikeda-Fukazawa
,
S.
Horikawa
,
T.
Hondoh
, and
K.
Kawamura
, “
Molecular dynamics studies of molecular diffusion in ice Ih
,”
J. Chem. Phys.
117
,
3886
3896
(
2002
).
55.
D. L.
Goldsby
and
D. L.
Kohlstedt
, “
Superplastic deformation of ice: Experimental observations
,”
J. Geophys. Res.: Solid Earth
106
,
11017
11030
, https://doi.org/10.1029/2000JB900336 (
2001
).
56.
K.
Fourteau
,
J.
Freitag
,
M.
Malinen
, and
H.
Löwe
, “
Microstructure-based simulations of the viscous densification of snow and firn
,”
EGUsphere
18
,
1
26
(
2023
).
57.
K.
Sundu
,
R.
Ottersberg
,
M.
Jaggi
, and
H.
Löwe
, “
A grain-size driven transition in the deformation mechanism in slow snow compression
,”
Acta Mater.
262
,
119359
(
2024
).
58.
A.
Bernard
,
P.
Hagenmuller
,
M.
Montagnat
, and
G.
Chambon
, “
Disentangling creep and isothermal metamorphism during snow settlement with X-ray tomography
,”
J. Glaciol.
69
,
899
910
(
2023
).
59.
J.
Hong
,
P.
Talalay
,
T.
Man
,
Y.
Li
,
X.
Fan
,
C.
Li
, and
N.
Zhang
, “
Effect of high-pressure sintering on snow density evolution: Experiments and results
,”
J. Glaciol.
68
,
1107
1115
(
2022
).
60.
S.
Schleef
and
H.
Löwe
, “
X-ray microtomography analysis of isothermal densification of new snow under external mechanical stress
,”
J. Glaciol.
59
,
233
243
(
2013
).
You do not currently have access to this content.