The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspaper news in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months. We classified the articles into 20 thematic axes and obtained a set of time series that capture daily newspaper attention on different topics in different provinces. To analyze the data, we use a point process approach. For each topic, n, and for all pairs of provinces, i and j, we use two measures to quantify the synchronicity of the events, Q s ( i , j ), which quantifies the number of events that occur almost simultaneously in i and j, and Q a ( i , j ), which quantifies the direction of news spreading. Our analysis unveils how fast the information diffusion process is, showing pairs of provinces with very similar and almost simultaneous temporal variations of media attention. On the other hand, we also calculate other measures computed from the raw time series, such as Granger Causality and Transfer Entropy, which do not perform well in this context because they often return opposite directions of information transfer. We interpret this as due to the characteristics of the data, which is highly non-stationary, and of the information diffusion process, which is very fast and probably acts at a sub-resolution time scale.

1.
J. A. C.
Gallas
and
H. E.
Nusse
, “
Periodicity versus chaos in the dynamics of cobweb models
,”
J. Econ. Behav. Organ.
29
,
447
464
(
1996
).
2.
R. J.
Field
,
J. A. C.
Gallas
, and
D.
Schuldberg
, “
Periodic and chaotic psychological stress variations as predicted by a social support buffered response model
,”
Commun. Nonlinear Sci. Numer. Simul.
49
,
135
144
(
2017
).
3.
J. E.
Kollmer
,
T.
Pöschel
, and
J. A. C.
Gallas
, “
Are physicists afraid of mathematics?
New J. Phys.
17
,
013036
(
2015
).
4.
M. E.
McCombs
and
D. L.
Shaw
, “
The agenda-setting function of mass media
,”
Public Opin. Q.
36
(
2
),
176
187
(
1972
).
5.
O.
Tsur
,
D.
Calacci
, and
D.
Lazer
,
A Frame of Mind: Using Statistical Models for Detection of Framing and Agenda Setting Campaigns
(
ACL
,
2015
). Vol. 1, pp. 1629–1638.
6.
L.
Guggenheim
,
S.
Jang
,
S.
Bae
, and
W.
Neuman
, “
The dynamics of issue frame competition in traditional and social media
,”
Ann. Am. Acad. Pol. Soc. Sci.
659
,
207
224
(
2015
).
7.
M. G.
Cosenza
,
M. E.
Gavidia
, and
J. C.
González-Avella
, “
Against mass media trends: Minority growth in cultural globalization
,”
PLoS One
15
,
1
14
(
2020
).
8.
G.
Ferraz de Arruda
,
F.
Aparecido Rodrigues
,
P.
Martín Rodríguez
,
E.
Cozzo
, and
Y.
Moreno
, “
A general Markov chain approach for disease and rumour spreading in complex networks
,”
J. Complex Netw.
6
,
215
242
(
2017
).
9.
M. N.
Kuperman
, “
Cultural propagation on social networks
,”
Phys. Rev. E
73
,
046139
(
2006
).
10.
M. G. E.
da Luz
,
C.
Anteneodo
,
N.
Crokidakis
, and
M.
Perc
, “
Sociophysics: Social collective behavior from the physics point of view
,”
Chaos, Solitons Fractals
170
,
113379
(
2023
).
11.
N.
Crokidakis
, “
Effects of mass media on opinion spreading in the sznajd sociophysics model
,”
Physica A
391
,
1729
1734
(
2012
).
12.
S.
Soroka
,
M.
Daku
,
D.
Hiaeshutter-Rice
,
L.
Guggenheim
, and
J.
Pasek
, “
Negativity and positivity biases in economic news coverage: Traditional versus social media
,”
Commun. Res.
45
,
1078
1098
(
2017
).
13.
M.
McCombs
, “
A look at agenda-setting: Past, present and future
,”
Journal. Stud.
6
,
543
557
(
2005
).
14.
A.
El Ali
,
T. C.
Stratmann
,
S.
Park
,
J.
Schöning
,
W.
Heuten
, and
S. C.
Boll
, “Measuring, understanding, and classifying news media sympathy on twitter after crisis events,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Association for Computing Machinery, 2018), pp. 1–13.
15.
W. R.
Neuman
,
L.
Guggenheim
,
S. M.
Jang
, and
S.
Bae
, “
The dynamics of public attention: Agenda-setting theory meets big data
,”
J. Commun.
64
,
193
214
(
2014
).
16.
S.
Pinto
,
F.
Albanese
,
C. O.
Dorso
, and
P.
Balenzuela
, “
Quantifying time-dependent media agenda and public opinion by topic modeling
,”
Physica A
524
,
614
624
(
2019
).
17.
F.
Albanese
,
S.
Pinto
,
V.
Semeshenko
, and
P.
Balenzuela
, “
Analyzing mass media influence using natural language processing and time series analysis
,”
J. Phys.: Complex.
1
,
025005
(
2020
).
18.
M.
McCombs
and
S.
Valenzuela
,
Setting the Agenda: The Mass Media and Public Opinion
(
Wiley
,
New Jersey, NJ
,
2020
).
19.
S.
Reese
and
L.
Danielian
, “Intermedia influence and the drug issue: Converging on cocaine,” in Communication Campaigns about Drugs: Government, Media, and the Public, edited by P. J. Shoemaker (Lawrence Erlbaum Associates, New York, 1989), pp. 29–46.
20.
G.
Golan
, “
Inter-media agenda setting and global news coverage
,”
Journal. Stud.
7
,
323
333
(
2006
).
21.
M. J.
Kushin
, “Tweeting the issues in the age of social media? Intermedia agenda setting between The New York Times and Twitter,” Ph.D. thesis (Washington State University, Edward R. Murrow College of Communication, 2010).
22.
L.
Guo
and
C.
Vargo
, “
Global intermedia agenda setting: A big data analysis of international news flow
,”
J. Commun.
67
,
499
520
(
2017
).
23.
S.
Mohammed
and
M.
McCombs
, “
Intermedia agenda setting or international news flow? Cross-lagged comparison of elite international newspapers
,”
Int. J. Commun.
15
,
3948
3969
(
2021
), https://ijoc.org/index.php/ijoc/article/view/16757.
24.
L.
Guo
and
Y.
Zhang
, “
Information flows from local to national: Evidence from 21 major US cities
,”
Journalism
24
,
2651
2667
(
2023
).
25.
S.
Stern
,
G.
Livan
, and
R. E.
Smith
, “
A network perspective on intermedia agenda-setting
,”
Appl. Netw. Sci.
5
,
31
(
2020
).
26.
W.
Cota
,
S. C.
Ferreira
,
R.
Pastor-Satorras
, and
M.
Starnini
, “
Quantifying echo chamber effects in information spreading over political communication networks
,”
EPJ Data Sci.
8
,
35
(
2019
).
27.
H.
Sjøvaag
,
E.
Stavelin
,
M.
Karlsson
, and
A.
Kammer
, “
The hyperlinked scandinavian news ecology
,”
Digit. J.
7
,
507
531
(
2018
).
28.
S.
Alipour
,
N.
Di Marco
,
M.
Avalle
,
G.
Etta
,
M.
Cinelli
, and
W.
Quattrociocchi
, “
The drivers of global news spreading patterns
,”
Sci. Rep.
14
,
1519
(
2024
).
29.
J.
Borge-Holthoefer
,
N.
Perra
,
B.
Gonçalves
,
S.
González-Bailón
,
A.
Arenas
,
Y.
Moreno
, and
A.
Vespignani
, “
The dynamics of information-driven coordination phenomena: A transfer entropy analysis
,”
Sci. Adv.
2
,
e1501158
(
2016
).
30.
P.
Grassberger
,
R. Q.
Quiroga
, and
T.
Kreuz
, “
Event synchronization: A simple and fast method to measure synchronicity and time delay patterns
,”
Phys. Rev. E
66
,
041904
(
2002
).
31.
S. Bird, E. Klein, and E. Loper,
Natural Language Processing with Python
, 1st ed. (O’Reilly Media, 2009).
32.
E.
Nguyen
, “Data mining applications with R,” in Text Mining and Network Analysis of Digital Libraries in R (Academic Press, 2014), pp. 95–115.
33.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
), https://www.jmlr.org/papers/v12/pedregosa11a.html.
34.
C. W. J.
Granger
, “
Investigating causal relations by econometric models and cross-spectral methods
,”
Econometrica
37
,
424
438
(
1969
).
35.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
,
461
(
2000
).
36.
A.
Kraskov
,
H.
Stögbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
,
066138
(
2004
).
37.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
38.
J.
Zhu
,
J.-J.
Bellanger
,
H.
Shu
, and
R.
Le Bouquin Jeannès
, “
Contribution to transfer entropy estimation via the k-nearest-neighbors approach
,”
Entropy
17
,
4173
4201
(
2015
).
You do not currently have access to this content.